
Step by Step to Histories�

Max Breitling and Jan Philipps

Institut f�ur Informatik
Technische Universit�at M�unchen

����� M�unchen
Germany

fmax�breitling�jan�philippsg�in�tum�de

FOCUS

Abstract� The behavior of reactive systems is typically speci�ed by
state machines� This results in an operational description of how a system
produces its output� An alternative and more abstract approach is to just
specify the relation between the input and output histories of a system�
In this work� we propose a way to combine state�based and history�based
speci�cations	 Abstract communication history properties of system com�
ponents can be derived from temporal logic properties of state machines�
The history properties can then be used to deduce global properties of a
complete system�

� Introduction

To allow precise reasoning about a hard� or software system� a mathematical
foundation for both systems and properties is a prerequisite� For some classes
of systems �in particular� clocked hardware� temporal logics have been used
successfully to formalize and to reason about their properties�

Temporal logic and model checking are less successful� however� when the
data�ow between loosely coupled components that communicate asynchronously
via communication channels is examined� For such systems� a black box view
which just relates input and output is more useful than the state�based glass
box view of a component� Black box properties of data�ow components and
systems can be concisely formulated as relations over the communication his�
tory of components ��� ��	 such properties are inherently modular and allow easy
reasoning about the global system behavior�

For individual data �ow components� however� a state�based glass box view
is helpful� State machines are good design documents for a component
s im�
plementation� Moreover� they provide an operational intuition that can aid in
structuring proofs� Safety properties� for example� are typically shown using in�
duction over the machine transitions�

In this paper we show �based on the ideas of Broy
s veri�cation of the
Alternating Bit Protocol ��� how speci�cations of the black box view of a

� This work is supported by the DFG within the Sonderforschungsbereich
���

system or system component can be systematically derived from state machine
speci�cations of the components� Thus we bridge the gap between techniques for
easy veri�cation of data�ow properties and more operational descriptions that
are close to e�cient implementations of a system�

The paper is structured as follows� In the next section we introduce some
mathematical concepts and notations� x � and x � describe history speci�cations
for the black box view� and state machines for the glass box view of a component�
respectively� In x � we present veri�cation rules for temporal logic properties that
are used in x � to relate the black box and glass box views of a component� In
x we demonstrate how the black box views support compositional reasoning
about a system� The conclusion in x � gives an outlook on future work�

� History Relations

A data�ow system is a network of components� Each component has input and
output ports� Ports of di�erent components are connected by directed chan�
nels� Communication over these channels is asynchronous� message bu�ers are
assumed to be unbounded� The black box view of a data�ow system regards
only the communication between components and abstracts from the internal
workings inside the components�

Systems in the black box view are modeled as relations over communication
histories� The relations are expressed using formulas in predicate logic where
the formula
s free variables range over streams� Each free variable represents the
communication history over one of the component
s input or output ports�

There is a rich mathematical basis for this system model ��� ��	 this section
contains only a short overview over the concepts used in the rest of the paper�

��� Streams�

The communication history between components is modeled by streams� A stream
is a �nite or in�nite sequences of messages� Finite streams can be enumerated�
for example� h�� �� �� � � � ��i	 the empty stream is denoted by h i� For a set of
messages Msg� the set of �nite streams over Msg is denoted by Msg�� that of
in�nite streams by Msg�� By Msg� we denote Msg��Msg�� Given two streams
s � t and j � N� �s denotes the length of s � If s is �nite� �s is the number of
elements in s 	 if s is in�nite� �s � �� We write s � t for the concatenation of
s and t � If s is in�nite� s � t � s � We write s v t � if s is a pre�x of t � i�e� if
� u � Msg� � s � u � t � The j �th element of s is denoted by s �j � if � � j � �s 	
it is unde�ned otherwise� ft�s denotes the �rst element of a stream� i�e� ft�s � s ���
if s �� h i�

The pre�x relation v is a partial order� The set of streams Msg� together
with v forms a complete partial order �CPO�	 the empty stream h i is the least
element in this CPO� This means that for every chain f si j i � N g of streams�
where for each i � si v si��� there is a unique least upper bound

F
f si j i � Ng�

A predicate � where the free variables range over streams M � is admissible� if

it holds for the limit of a chain of valuations for its variables� provided that it
holds for each element of the chain� We then write adm �� Syntactical criteria
for admissibility can be found in �����

Stream concatenation and the pre�x order can be extended pointwise to
tuples of streams	 continuity of functions and admissibility of pre�x can also be
de�ned for stream tuples�

��� Component Speci�cation

Figure � shows the system structure of a bounded transmission system with
three components� a sender� a receiver� and a bu�er with a capacity for N � �
data messages� For now� we just examine the sender�

Sender Queue Receiver
i 	 Msg o 	 Msg

x 	 Msg y 	 Msg

ack 	 Signal req 	 Signal

Fig� �� Bounded Bu�er

The black box view of the sender is speci�ed by giving a set of input channel
identi�ers I and a set of output channel identi�ers O �where I � O � �� to
de�ne its interface� The behavior is speci�ed by a predicate with free variables
from I and O � Each channel identi�er has an assigned type that describes the
set of messages allowed on that channel� Typically� we write the speci�cation in
the following style�

Sender

in i � Msg� ack � Signal
out x � Msg

x v i

�x � min��i � � ��ack�

Intuitively� the sender behaves as follows� On channel x it forwards the mes�
sages it receives on channel i � in the same order� but possibly not all of them�
This safety property is denoted by the �rst assertion� The second assertion con�
tains both a safety and liveness part� For liveness� it demands the sender to send
at least the number of messages it receives on i 	 but only as long as each message
is acknowledged	 the safety part asserts that at most this number is received�

The speci�cation pattern of the sender is typical for history speci�cations�
The speci�cation is a conjunction of pre�x expressions which restrict the data
values on the output channels� and �in��equalities� which specify the length of
the output histories in terms of the length of the input histories�

��� Component Composition

The history relation of a composed system can be derived from the history rela�
tions of its components� Components may share input channels� but each output
channel must be controlled by only one single component� This is captured in
the de�nition of compatibility� Two components S� and S� are compatible if they
do not share output channels� OS� �OS� � ��

The result of the composition� noted as S� 	S�� is again a system speci�ca�
tion� Channels with identical names are connected� the output of the composi�
tion is the union of the two component
s output channels� and the input of the
composition consists of those input channels that remain unconnected�

IS��S�
df

� �IS� � IS�� n �OS� �OS��� OS��S�

df

� OS� �OS�

The behavior of the composed system is de�ned as the conjunction of the com�
ponent behavior predicates�

� State Machines

State machines are a more operational way to specify data�ow components than
history relations� We use the term state machine both for the abstract syntax
�state transition systems� x ���� and for the concrete graphical representation
�state transition diagrams� x ����� The executions of state transition systems are
de�ned in x ����

First we give a formal de�nition of variable valuations for an assertion� Vari�
able valuations allow us to talk about the validity of assertions in the di�erent
states of a state machine execution�

��� Variable Valuations

We assume an �in�nite� set Var of variable names� A valuation � is a function
that assigns to each variable in Var a value from the variable
s type� By free��� we
denote the set of free variables in a logical formula �� If an assertion � evaluates
to true when each variable v � free��� is replaced by ��v�� we write � j� ��

Variable names can be primed � For example� v � is a new variable name that

results from putting a prime behind v � We extend priming to setsV � df

� f v � j v �
V g and to valuations� Given a valuation � of variables in Var� �� is a valuation of
variables in V � with ���v �� � ��v� for all variables v � Var� Priming can also
be extended to predicates� functions and other expressions� If � is an assertion
with free���
 V � then � � is the assertion that results from priming all free
variables�

Note that an unprimed valuation � assigns values to all unprimed variables�
while a primed valuation �

�
only assigns values to all primed variables� If an

assertion � contains both primed and unprimed variables� we need two valuations
to determine its truth� If � evaluates to true when each unprimed variable v �
free��� is replaced by ��v� and each primed variable v � � free��� is replaced

by �
�
�v�� we write ���

�
j� �� Two valuations coincide on a subset V
 Var if

� v � V � ��v� � ��v�� We then write �
V

� ��

��� State Transition Systems

A state transition system is a tuple S � �I �O �A� I� T �� where I �O �A are sets
of variables� A state of our system is described by a valuation �� that assigns

values to all variables in V
df

� I �O �A� I is an assertion with free�I�
 V that
characterizes the initial states of the state transition system� T is a �nite set of
transitions	 each transition � � T is an assertion with free�I�
 V � V �� The
tuple elements have to obey the following restrictions�

The sets I and O � with I � O � �� contain the input and output channel
variables� The variables range over �nite streams which represent the commu�
nication history to and from the component� The set A contains local state
attributes� as e�g� a variable � for a control state and variables for data states�
Additionally� A contains for every i � I a variable i�� These variables hold the
part of the external input stream i that has already been processed by S� The
restrictions on the initialization and transition assertions de�ned below ensure
that i� v i always holds� We can therefore de�ne i� as the part of the message
history that has not yet been processed by i � i� � i��

The assertion I characterizes the initial states of the system� We require I
to be satis�able for arbitrary input streams

�� � � j� I �
�
�� � �

O�A

� � � j� I
�

and to assert that initially no input has been processed and no output has yet
been produced�

I
�
i�I

i� � h i �
�
o�O

o � h i

The set T contains the allowed transitions of S� Every transition � � T is an
assertion over V � V � and relates states with their successor states� Unprimed
variables in � are valuated in the current state� while primed variables are valu�
ated in the successor state� All transitions must guarantee that the system does
not take back messages it already sent� that it can not undo the processing of
input messages� that it can only read messages that have been sent to the com�
ponent and that it does not change the variables for input streams� since these
are controlled by the environment�

�
�
o�O

o v o� �
�
i�I

i� v i�� �
�
i�I

i�� v i �
�
i�I

i � i �

In addition to the transitions in T � there is an implicit environment transition ���
This transition is de�ned to allow the environment to extend the input� while it
leaves the controlled variables v � O � A unchanged�

�� �
�

v�O�A

v � v � �
�
i�I

i v i �

A transition is enabled in a state �� written as � j� En���� i� there is a state �
such that ���

�
j� � �

��� Executions

An execution of a STS S is an in�nite stream � of valuations that satis�es the
following three requirements�

�� The �rst valuation in � satis�es the initialization assertion�

��� j� I

�� Each pair of subsequent valuations ��k and ���k � �� in � are related either
by a transition in T or by the environment transition ���

��k � ����k � �� j� �� �
�
��T

�

�� Each transition � � T of the STS is taken in�nitely often in an execution�
unless it is disabled in�nitely often �weak fairness��

�� k � � l � k � ��l j� � En���� � �� k � � l � k � ��l � ����l � �� j� ��

By hhSii we denote the set of all executions of a system S�

��� State Transition Diagrams

Typically� state transition systems are speci�ed by state transition diagrams

�STDs�� We use a subset of the STD syntax from the CASE tool AutoFocus
���� STDs are directed graphs where the vertices represent �control� states and
the edges represent transitions between states� One vertex is designated as initial
state	 graphically this vertex is marked by an opaque circle in its left half� Edges
are labeled	 each label consists of four parts� represented by the following schema�

fPreconditiong Inputs B Outputs fPostconditiong

Inputs and Outputs stand for lists of expressions of the form i�x and o�exp �i �
I � o � O� respectively� where x is a constant value or a �transition�local� variable
of the type of i � and exp is an expression of the type of o� The Precondition is a
boolean formula containing data state variables and transition�local variables as
free variables� while Postcondition and exp may also contain primed variables�
The distinction between pre� and postconditions does not increase the expres�
siveness� but improves readability� If the pre� or postconditions are equivalent to
true� they can be omitted�

The informal meaning of a transition is as follows� If the available messages
on the input channels can be matched with Inputs � the precondition is true and
the postcondition can be made true by assigning proper values to the primed

Sender

Transmit WaitAck

id B x �d

ackb B

Receiver yd B o�d � req ��

ReceiveInit
B req ��

Queue

Empty Nonempty

Full

xd B ack �� fq � � q � hdig

f�q � �g reqb B y �ft�q fq � � rt�qg

f�q � �g reqb B y �ft�q fq � � rt�qg

f�q � N � �g xd B
ack �� fq � � q � hdig

f�q � N � �g xd B
fq � � q � hdig

reqb B ack ��� y �ft�q fq � � rt�qg

var q 	 Msg� � h i

Fig� �� Sender� Receiver and Queue STDs

variables� then the transition is enabled� If the transition is executed� the inputs
are read� the outputs are written and the postcondition is made true�

Figure � shows the STDs of sender� queue and receiver of the transmission
system �see Fig� ��� Again� we focus on the sender component� If the sender
receives some data d on channel i � this message is immediately forwarded on x �
and the system starts waiting for an acknowledgment message on channel ack �
When the acknowledgment is received� the sender is ready to receive the next
message from i �

State transition diagrams can be encoded schematically as state transition
systems� For the sender component� the variable sets are de�ned as follows�
I � fi � ackg� O � fxg �see Fig� ��� A � fi�� ack�� �g� The state attributes
consist of the processed message stream for each of the two input channels� and
a variable � to hold the current control state�

The initial assertion I of the sender is de�ned as�

� � Transmit � i� � h i � ack� � h i � x � h i

The transition �� from the state Transmit to the state WaitAck in the sender
STD is encoded as the following assertion�

� d � � � Transmit We move from the source state

� �� � WaitAck to the target state�

� �i� � �i There are unread messages in channel i �

� ft �i� � d Let d be the �rst of them�

� i�� � i� � hdi which we consume

� x � � x � hdi and send on channel x �

� ack�� � ack� whereas we don�t read from channel ack �

� i � i � � ack � ack � and leave the input channels unchanged�

The second transition �� of the sender can be encoded similarly� Note that the
initialization and transition assertion obey the restrictions from x ����

The queue and receiver components lead to similar transition assertions� In
case of the queue component� there is an additional variable q in A� Initially�
q � h i	 the transitions change q according to the queue STD� A more detailed
explanation of the translation of STDs to STS assertions can be found in ����

� Veri�cation Rules

A common technique for formalizing and verifying properties of state transition
system executions is temporal logic ����� For the state machines of x � we are
not interested in general temporal logic properties� but only in two special cases�
invariants for safety properties and leadsto properties for liveness� This section
introduces veri�cation rules for these two property classes� Soundness proofs of
these and other rules �expressed in a UNITY�like formalism� can be found in
����

Note that both invariance and leadsto properties relate single states in an
STS execution	 in x � these properties are used to express properties about the
complete communication history of executions�

��� Invariance Properties

To show that a STS S ful�lls a safety property� we use invariants� For a system
S � �I �O �A� I� T �� an assertion � with free���
 I � O � A is an invariant�
written as S j� ��� if � evaluates to true for each state in all executions of S�

S j� �� � � � � hhSii � � k � ��k j� �

To prove � to be an invariant� we have to show that � holds initially� and
remains true under each transition � � T as well as under the environment
transition ���

I �

� � � �� for all � � T
� � �� ��

S j� ��

Example� For the sender� the output on channel x is always equal to the sequence
of messages from i that have already been consumed�

Sender j� � x � i�

The �rst condition of the invariant rule is ful�lled� since for the sender initially
both x and i� are empty �see x ����� The other two premises are ful�lled since the
sender transition �� appends a single message to both x and i�	 for transitions
�� and �� we observe that both x and i� remain unchanged�

��� Leadsto Properties

Progress of a system can be expressed using the leadsto operator �� � � which
states that whenever � is true for a state in an execution� then � will be true in
the same or in a subsequent state in the execution� Usually� the leadsto operator
is de�ned in temporal logic as ��� ���� but for our purposes the following
semantic de�nition of S j� �� � is su�cient�

S j� �� � � � k � ���k j� �� �� l � k � ��l j� ��

For the leadsto operator� too� there are veri�cation rules�

For all transitions � � T � f��g�
� � � � � � �� � � �

For a transition � � T �
� � � � En���
and

� � � � � � � �

S j� �� �

For a transition � � T �
�o � k � k � L En���
and

�o � k � k � L � � �o� 	 k

S j� �o � k � k � L � �o 	 k

The �rst rule is a standard veri�cation rule for liveness under weak fairness
���� ���� There is a helpful transition � � T which is enabled in all states where
� holds� and which leads into a state where � holds �second premise�� The other
transitions are not harmful in that they leave � invariant� Thus� the helpful
transition remains enabled until it is� by weak fairness� executed� The second
rule� the output extension rule� is a specialization of the �rst rule� It is used to
prove that an output stream exceeds a certain length k provided that su�cient
input is available� This can be described by an N�valued length expression L with

free�L�
 I which is monotonic in its free variables� The main di�erence to the
�rst rule is that it is not necessary to show the safety premises of the �rst rule�
For this special case they hold trivially� since channel valuations are monotonic
with respect to v� and due to its monotonicity the length expression L can be
proven to be nondecreasing ���� The left hand side of the output extension
s
conclusion rule can be strengthened by an arbitrary predicate � � if the left hand
sides of the premises are also strengthended by � �

Besides the two rules above� there are a number of additional rules for the
leadsto operator� transitivity� weakening of the right hand side� strengthening
of the left hand side� The disjunction rule combines two leadsto properties� If
S j� �� � � and S j� �� � � � then also S j� ��� � ��� � � � Moreover�
invariants can be introduced and eliminated on both sides of the operator�

Example� Again regarding the sender� we want to show

Sender j� �x � k � k � min��i � � ��ack�� �x 	 k

which expresses that the output on x is extended� provided there is su�cient
input on i and ack expressing that the length of the output on x is reaching at
least the limit min��i � � ��ack��

For � � Transmit � we use the output extension rule with �� as the helpful
transition� since it produces output on x � The last condition of the rule is easy
to prove� since �� implies the extension of x by x � � x � hdi� so that �x �
k � �� � �x � 	 k is trivial� For the second condition we have to prove that ��
is enabled� If we assume � � Transmit � it is enabled i� there is some message
on the channel i � i�e� i� i is longer than its consumed part i�� Using the safety
invariant from above� this can be derived as follows�

�i � min��i � � ��ack� 	 k � �x � �i�

For � � WaitAck � transition �� is not enabled� Instead� we use the standard
weak fairness rule to show that by transition �� state WaitAck is entered� The
two results can be combined with the transitivity and disjunction rules to derive
the property

Sender j� ��� � WaitAck � � � Transmit�

� �x � k � k � min��i � � ��ack�� � �x 	 k

It can be shown that � � WaitAck � � � Transmit is an invariant	 its elimina�
tion results in the property above ����

� History Properties

We introduced two ways to specify reactive systems� history relations and state
machines� The two views describe quite di�erent views on a system� Using the
black box views of history relations� we model the I�O behavior with streams	

the relations do not refer to any internals of the components and do not describe
how this behavior is achieved� Using state machines we concentrate on single
steps of the system� referring to the component internals� In this section� we
close the gap between state machines and black box views�

Within a state machine execution �� changes in the valuations for the input
and output variables in I � O are restricted to extensions� Thus the valuations
of each input and output variable within an execution form a chain� and for each
execution and each variable v � I �O there is a least upper bound

d�e�v�
df

�
F
f ���k��v� j k � N g

Note that d�e�v� is only de�ned for the input and output variables� not for the
attribute variables A of a state machine�

The black box view of a state machine is a set of valuations for the variables
I �O � It is denoted by ��S�� and de�ned via the least upper bounds of the input
and output histories of the machine
s executions� A valuation in ��S�� assigns
those streams to input and output channels that can appear
in in�nity
 on the
channels in an in�nite execution of the system�

��S��
df

� f � j � � � hhSii �
�
i�I

��i� � d�e�i� �
�
o�O

��o� � d�e�o� g

Since both the proper transitions � � T and the environment transition �� of
a state machine allow arbitrary extension of the input variable valuations� it is
possible to successively approximate an arbitrary input history� This means that
the black box view ��S�� is total with respect to the input variables of S� For an
arbitrary input there is always some reaction of the system� Formally� this reads
as� For each valuation � for the variables I � O there exists a valuation � for
I �O such that

�
I

� � and � � ��S��

��� Safety Properties

In practice� it is di�cult to directly use the black box semantics ��S�� of a state
machine� Instead� we derive properties of the black box view from properties
of the state machine� Technically� a property of the black box view ��S�� is a
predicate � with free���
 I �O which is valid for each valuation in a system
s
black box view�

�� � ��S�� � � j� �

We then write ��S�� ��

If � is an admissible invariance property of a state machine� it holds not only
in every state of a system run� but also for the complete communication history�

free���
 I �O

adm �

S j� ��

��S�� �

The validity of the rule follows from the fact that the valuations of the channel
variables I and O form a chain� Because of it is invariant� � holds for every
element of the chain� Because of admissibility� it also holds in the limit�

Example� In x ��� we showed that x � i� is an invariant of the sender� Moreover�
we have i� v i � and thus x v i is also an invariant� This predicate is also
admissible ����� and thus we can directly conclude

��Sender �� x v i

This means that the sender STD implies the �rst half of the sender
s history
speci�cation in x ���� Similarly� we can show ��Sender �� �x � � ��ack �

��� Progress Properties

In general� progress properties expressed with the leadsto operator� cannot be
lifted to complete executions� However� output extension properties �x ���� can
be used to derive liveness properties of a state machine
s black box view� In the
following rule� L is a monotonic N�valued expression with free�L�
 I � as used
in the output extension rule�

S j� �o � k � k � L� �o 	 k

��S�� �o � L

To see the validity of the rule� assume that the premise holds� but not the
conclusion� Thus� there is an execution � of S such that the length of the limit
of the channel valuations for o is strictly less than the limit of the valuations
of L in each state	 in particular� it is equal to a natural number k � This means
that there is an earliest state ��n in the execution where the length of the output
valuation for o reaches k � Moreover� there is a state ��m where L is larger than k �
Since channel valuations cannot become shorter� and L is monotonic� this means
that in all states ��p� where p � max �n�m� the left hand side of the premise is
ful�lled� but the right hand side never holds� This violates the assumption that
the premise is valid�

Example� From the result of our example in x ���� we can directly use the above
rule to derive

��Sender �� �x � min��i � � ��ack�

Together with the safety properties shown above� this implies the second part of
the sender
s history speci�cation�

� Black Box Composition

We now have a closer look on the complete transmission system of Fig� �� The
sender pushes data to the queue and waits for acknowledgments and the receiver
requests data from the queue	 the queue itself stores up to N �N � �� data
messages�

The behavior of the three components is de�ned in Fig� � by STDs� Using
the techniques of this paper� we can show that the receiver and the queue imply
the following history relations�

Queue�N �
in x � Msg� req � Signal
out ack � Signal� y � Msg

y v x

�y � min��x ��req�
�ack � min��x ��req �N � ��

Receiver

in y � Msg
out req � Signal� o � Signal

o v y

�o � �y

�req � ���y

By black box composition� the history relation of the complete system is
speci�ed as follows� The behaviour is simply described by the conjunction of the
components properties�

System�N �
in i � Msg
out o � Signal� x � Msg� ack � Signal� y � Msg� req � Signal

x v i

y v x

o v y

�x � min��i � � ��ack�

�y � min��x ��req�
�ack � min��x ��req �N � ��

�o � �y

�req � � ��y

From the speci�cation of System�N � above� we can immediately see that the
output is a pre�x of the input� o v y v x v i � Using the inequalities it can also
be shown by some case analysis that the length of the output equals the length
of the input� Together� this implies

o � i

for all input streams i � As expected� the system implements the identity relation�
The same result could have been obtained by �rst composing the three com�

ponent state machines� and then deriving o v i and �o � �i 	 the number
of veri�cation conditions for the invariance and leadsto properties would have
been much higher� however� For the composition of data�ow properties� history
relations seem to be the more adequate abstraction level�

� Conclusion

In this paper we showed how state�based and history�based speci�cation and
veri�cation techniques for safety and liveness properties of distributed systems
can be combined� State machine properties are expressed using a standard linear
temporal logic	 history properties are expressed as relations between input and
output streams�

In a related technical report ��� we also allow composition at the level of state
machines	 properties proven for the combined system are shown to hold also for
the black box composition of a system� That our system is compositional is due
to the data�ow nature of our systems� Components cannot disable transitions
of other components� thus the system is interference free� This is quite useful
in practice� since it is often hard to �nd suitable history predicates for each
component� although the complete system behavior can be succinctly speci�ed
in this way� State machine composition also helps to circumvent the mismatch
between purely relational data�ow speci�cations and the operational intuition
that was discovered by Brock and Ackermann ����

Proofs for larger systems� especially for leadsto properties� are often quite
complex� A solution might be to use veri�cation diagrams along the lines of
��� ���� which reduce temporal reasoning to simple �rst�order veri�cation condi�
tions� Since the number of veri�cation conditions for concrete systems can be
quite large� some kind of tool support is needed� As an experiment� the safety
properties of the communication system example have been veri�ed using the
STeP ��� proof environment	 currently� we are formalizing our approach in Is�
abelle�HOL �����

Our speci�cation and proof techniques are so far only suited for time in�
dependent systems� The extension of history�based speci�cations raises some
interesting questions ���� A straightforward solution might be to explicitly in�
clude �time ticks in the message streams� Such time ticks can also be used
to ensure progress of a state machine� But also without explicit time� progress
is not restricted to the weak fairness condition of x ���� An alternative would
be to just demand that some transition is taken whenever at least one transi�
tion is persistently enabled	 some classes of components� in particular fair merge
components would then require additional oracle inputs�

Acknowledgments This report bene�ted from many stimulating discussions
with Manfred Broy� We thank Katharina Spies for comments on a draft version
of this report� and one anonymous referee for his very detailed remarks�

References

�� N� Bj�rner� A� Browne� E� Chang� M� Col�on� A� Kapur� Z� Manna� H� B� Sipma� and
T� E� Uribe� STeP	 Deductive�Algorithmic Veri�cation of Reactive and Real�time
Systems� In CAV���� Lecture Notes in Computer Science ����� pages ��������
�����

�� M� Breitling and J� Philipps� Black Box Views of State Machines� Technical Report
TUM�I����� Institut f�ur Informatik� Technische Universit�at M�unchen� �����

� J� D� Brock and W� B� Ackermann� Scenarios	 A model of nondeterministic com�
putation� In J� Diaz and I�Ramos� editors� Lecture Notes in Computer Science ����
pages �������� �����

�� I� A� Browne� Z� Manna� and H� B� Sipma� Generalized temporal veri�cation
diagrams� In Lecture Notes in Computer Science ����� pages �������� �����

�� M� Broy� Functional speci�cation of time sensitive communicating systems� In
J� W� de Bakker� W� P� de Roever� and G� Rozenberg� editors� Models� Formalism�

Correctness� Lecture Notes in Computer Science 	
�� pages ��
����� Springer�
�����

�� M� Broy� From states to histories� In Engineering Theories of Software Con�

struction� NATO Science Series F� Marktoberdorf Summer School� ����� To be
published�

�� M� Broy� F� Dederichs� C� Dendorfer� M� Fuchs� T� F� Gritzner� and R� Weber�
The Design of Distributed Systems	 An Introduction to Focus�Revised Version�
Technical Report TUM�I������� Institut f�ur Informatik� Technische Universit�at
M�unchen� ���
�

�� M� Broy� F� Huber� B� Paech� B� Rumpe� and K� Spies� Software and system mod�
eling based on a uni�ed formal semantics� In M� Broy and B� Rumpe� editors�
Requirements Targeting Software and Systems Engineering� International Work�

shop RTSE���� Lecture Notes in Computer Science ����� Springer� �����
�� F� Huber� B� Sch�atz� A� Schmidt� and K� Spies� Autofocus�a tool for distributed

systems speci�cation� In Proceedings FTRTFT��� Formal Techniques in Real�

Time and Fault�Tolerant Systems� Lecture Notes in Computer Science ��
�� �����
��� L� Lamport� The temporal logic of actions� ACM Transactions on Programming

Languages� ��
�	������
� May �����
��� Z� Manna and A� Pnueli� Models for reactivity� Acta Informatica�
�	��������

���
�
��� L� C� Paulson� Logic and Computation� Cambridge University Press� �����
�
� L� C� Paulson� Isabelle� A Generic Theorem Prover� Lecture Notes in Computer

Science ���� Springer� �����

