
Interaction Interfaces –
Towards a scientific foundation of a methodological usage of

Message Sequence Charts

Manfred Broy and Ingolf Krüger
Technische Universität München

Arcisstr. 21
D-80290 München

Germany

E-mail: �broy|kruegeri�@in.tum.de

Abstract

We introduce the formal notion of an interaction inter-
face. Its purpose is to specify formally the interaction be-
tween two or more components that co-operate as subsys-
tems of a distributed system. We suggest the use of inter-
action interfaces for the description not of the behaviour
of a single component in isolation but of the interface, the
co-operation, between two or more components that are in-
teracting within a distributed system. Typical examples are
the interaction between an embedded system and its envi-
ronment or the interaction between a sender and a receiver
in a communication protocol. An interaction interface can
be formally described by predicates characterising sets of
interaction histories. We understand the specification of in-
teraction histories as a typical step in system development
that prepares the decomposition of a system into interact-
ing subcomponents. After fixing the distribution structure
of the system, an interaction interface is worked out that
describes how the introduced subcomponents interact. In
a successive development step we systematically derive the
individual component specifications from the interface de-
scription. We show how such an interaction interface can be
decomposed systematically into component specifications.

1. Introduction

When developing distributed and interacting systems, a
classical top down proceeding begins with a problem analy-
sis followed by a requirements capture and the specification
of the required system services. The specification describes
the required black box behaviour of the overall system. In
further development steps, the system is decomposed into

subcomponents forming the constituents of the system ar-
chitecture.

In such a systematic development process, we are, in a
first step, not mainly interested in the specification of the
behaviour of the various components of a system, called the
component black box specification, but rather in the descrip-
tion of the interaction between these components. Such a
proceeding is typical for the development steps of software
architectures where we are, in particular, aiming at the de-
composition of a system into subsystems, called the com-
ponents of the system, that realise the required system ser-
vices by means of co-operation. We call the description
of the interaction between components an interaction inter-
face specification. After fixing the architecture, we develop
component specifications based on the description of the in-
teraction.

There are several branches of software engineering that
suggest the modelling of the interaction between compo-
nents as a major step in requirements engineering or in de-
sign, preparing and complementing the modelling and spec-
ification of the behaviour of components in isolation. This
is typical for the development of reactive embedded sys-
tems, for software architectures, for a number of design
patterns (see [6]), and for the description of communica-
tion protocols in telecommunication applications. There,
mainly graphical descriptions of interaction instances are
used such as the message sequence charts (MSCs) as they
are described in [9] as a spin-off of SDL or the process di-
agrams of GRAPES (see [7]). MSCs have found their way
also into object-oriented analysis techniques for represent-
ing so-called use-cases (see [8]) or scenarios (cf. [10, 2, 5]).
We consider MSCs as an example of a semiformal descrip-
tion technique that can be turned into a formal description
method by providing a formal semantics. We do not present

such a formal definition of the meaning of MSCs here, but
work with a formal notion of instances of interaction right
away.

In the following, we show how the notion of an interac-
tion interface can be described by formal means and how
an interaction interface can be systematically refined into
component descriptions. We introduce, in particular, a for-
mal model for interaction interfaces and relate it to a formal
model of the functional behaviour of components.

The paper is structured as follows: in Section 2 we intro-
duce the formal concept of an interaction interface. Section
3 provides an analysis of the idea of an interaction inter-
face and introduces general timing and causality require-
ments for interface specifications. Furthermore, other tech-
niques for modelling interaction interfaces such as traces
and graphical models are briefly discussed. In Section 4 we
show how to derive component specifications from an in-
teraction interface specification. In Section 5 we discuss
differences between safety and liveness properties in the
deduction of a component specification from an interface
specification. In Section 6 we study the concept of refine-
ment for interaction interface specifications. In Section 7
we relate this discussion to the notion of realisability of
components. Section 8 contains our conclusions.

2. Interaction interfaces

An interaction interface describes the mutual interaction
between two or more components. We concentrate, for
simplicity and convenience, in the following mainly on the
interaction interface between two components. However,
all the ideas presented for this restricted case easily gen-
eralise and carry over to the description of the interaction
of larger sets of components. Moreover, also the interac-
tion between a system and its environment can be seen as
a special case of interaction interfaces between two com-
ponents. We work with a very simple, yet powerful model

E Q

I

O

...

...

Figure 1. Graphical Description of the Inter-
action Interface Between Two Components

of interaction. We assume that the components of a sys-
tem communicate by exchanging messages asynchronously
via directed channels. An interaction interface between two

components, as it is schematically illustrated in Fig. 1, con-
sists of a syntactic and of a semantic part. The syntactic part
is rather straightforward. It is specified by the names, sorts,
and directions of the channels that connect the two compo-
nents. In this document we graphically denote a component
by a box labeled with the component’s name. We represent
channels by arrows directed from the source to the destina-
tion component. Let � denote the set of all channels that
are part of the interaction interface. We assume that the set
of channels � can be decomposed into the set � of channels
directed from left to right in Fig. 1 and the set � of chan-
nels directed from right to left. For concrete applications we
assume, of course, that the channels are typed. More pre-
cisely, each channel is assigned a data type that indicates
the sort of the messages that are sent over this channel.

It is helpful to introduce some basic notions and some
specific notation before we go deeper into our subject. We
use streams, i.e. finite or infinite sequences of messages, to
represent communication histories. A timed stream (more
precisely a stream with discrete time) of messages from the
set � is an element of the set

�����

which stands for
����� ����

A timed stream consists of an infinite sequence of finite se-
quences of messages. The �-th of the finite sequences in
such a stream represents the sequence of messages trans-
mitted on the channel in the �-th time interval. Given
� � ����� and � � � by ��� we denote the stream of
the first � time intervals. Formally ��� is the restriction of
the domain of � � ����� �� � to the finite set ��� � � � � ��
with

������� � ��� for � � � � ��

By ��� �� � � � ��� we denote the finite stream consist-
ing, in that order, of the elements �� through �� with
�� � � for � � � � �. We denote the empty stream
by ��. Given two (finite or infinite) streams �� and ��, we
denote their concatenation by �����. The operation 	��
yields the number of messages from set 	 in stream �. If �
is a timed stream and
 � �����, we write � �
 for the fi-
nite sequence of messages occuring in � at time point
. For
any set 	 we denote the number of its elements by �	 .

Given a set of channels � we write �� for the set of all
its valuations. Valuations are the mappings

� � ������

The elements of the set �� are also called the communica-
tion histories for the channels in � . Every valuation � � ��
of the channels in � by timed streams assigns a communi-
cation history ��
 to every channel
 � � . In such a history,

we represent the stream of the sequences of messages sent
on the channels in each of the time intervals. If the chan-
nels are typed then we assume for a valuation � � �� that the
stream ��
 for every channel
 � � contains only messages
of the respective sort.

Given a valuation � � �� and a number � � �, by

���
we define the finite valuation in

� � �����

by
�������
� � ���
����

Thus ��� denotes the finite initial segment of the messages
of the first � intervals.

Given a valuation� � �� we denote by ��� the restriction
of the valuation � to the channels in the set � � � ; ��� is a

valuation in the set �� , specified by the formula

���� ��
 � ��
 	
 � � �

Throughout this paper, we assume that the set � of chan-
nels is decomposed into channels in the set � pointing into
one direction and channels in the set � pointing into the
opposite direction. Mathematically speaking, we assume
� � �
� and � �� � �.

Given channel valuations � � �� and � � �� we write �
�
for the valuation in �� where for all channels
 � � we
specify this valuation by the formulas

��
���
 � ��
 	
 � �

��
���
 � ��
 	
 � �

Given these basic definitions the interaction interface can be
specified mathematically by a predicate� that describes the
set of valuations for the channels in � by streams that may
occur during the interaction between the two components.
Formally,� corresponds to a mapping

� � �� � �

Note that, of course, both components may have further in-
put and output channels that are not part of the interaction
under consideration. In the interface description these chan-
nels may be ignored as long as we do not want to describe
situations where the interaction interface depends essen-
tially on the valuations of these additional channels1. Only
then this dependency has to be made explicit in the interac-
tion interface. In the following, we ignore the latter case.
Then the interaction interface describes all communication
histories allowed for the channels in � that may occur for
the set of possible evaluations for all channels (including, in
particular, the channels not contained in �).

1In the literature, authors speak of hidden channels.

3. An operational view on interaction inter-
faces

In the model introduced above, where we describe the in-
teraction interface by a predicate � � �� � � we assumed
a partitioning of the channel set � into the sets � and � , but
we did not take into account the directedness of these chan-
nels, semantically. Intuitively, it is clear that the messages
on the channels in � in Fig. 1 are sent and, therefore, exclu-
sively determined by the component on the left while the
messages on the channels in � are determined exclusively
by the component on the right. This causal relationship be-
tween the messages and their timing is discussed in more
detail in this section.

We think about the interaction of the two components in
Fig. 1 as follows. In every time interval both components
determine independently their sequences of messages that
they send on their outgoing channels in that time interval.
This idea captures the essence of asynchronous input and
output in directed communication and leads to the formu-
lation of the following property that we require to hold for
any proper specification of a semantic interaction interface.

The semantic interface described by the predicate � is
called consistent with respect to time guardedness if for all
valuations �� �� � �� of the input channels we have for all
times
 � �:

��
 � �� �

� ���
�� � ���
��� � ���
�� � ����
���

as well as for all valuations �� �� � �� of the output channels
we have for all times
 � �:

��
 � �� �

� ���
�� � ���
��� � ���
�� � ���
����

Time guardedness expresses that a component as well as the
environment may react to input received in the
-th time in-
terval only in the �
���-th time interval2 or in later time
intervals. Since we assume that the only way of interac-
tion between a component and its environment is by send-
ing messages on the channels3, both the output produced by
the component and the environment in the �
���-th time
interval must only depend on the input they have received
until time interval
 from their partner component. If every
reaction to an incoming message requires some time and,
therefore, is slightly delayed, time guardedness is a reason-
able assumption4.

2This is a reasonable assumption as long as we assume that our time
granularity is chosen so fine that reaction to input can always only occur
as early as in the next time interval.

3This excludes a connection by hidden channels that provide informa-
tion about the future messages for the visible channels.

4There are other models of interactive systems, of course, that do not
follow such a strict idea of causality.

...

E Q

send request

sending phase

end communication

sreq

d1

sack

dack

dn

ereq

dack

eack

idle

await_sack

sending

sending

await_eack

idle

receiving

idle

receiving

receiving

idle

Figure 2. Message Sequence Chart for the Standard Case of Successful Communication, with Com-
ponent E Initiating the Transmission

Time guardedness is a simple idea to model and ensure
the principle of causality between the messages mutually
exchanged in an interaction interface. If the messages are
fixed until time
, the messages on the channels in � as well
as the messages on the channels in � can be and have to be
chosen independently of each other in the �
���-th time in-
terval. More precisely, which messages occur in the �
���-
th interval on the channels in the set � may depend on the
messages on all the channels in �
� until time
 but not on
the messages in the �
���-th interval on the channels in the
set � and vice versa. This concept is to be seen in contrast
to the ideas of instantaneous reaction and perfect synchrony
(see Esterel in [1]) where the time model is chosen in a way
that supports a feedback process taking place between two
components within a single time slot.

Another possibility, apart from valuations of directed
channels by streams, for modelling interaction interfaces
are sets of traces. A trace can be associated with a time
guarded function � easily as follows. Seen from the per-
spective of the component to the right in Fig. 1, given the
input sequences �� � � � �� for the �-th time interval we
get the input stream

��� �� �� �� � � ��

and given the output sequences �� � � � �� we get the
output stream

��� �� �� � � ���

We construct from these two streams the trace consisting al-
ways of the output at time point � followed by the input at
time point k5. The input and output at time point � are sepa-
rated from the input and output at time point ��� by a time

5Note that the choice of the order between the messages from �� and

tick signal
�

. In addition, we may label these messages by
the channel names and interleave these labelled messages in
the sequences �� and �� leading to the sequences 	�� and 	��.
We obtain traces of the form

	���	����
�
��	���	����

�
�� � � �

In traces, in contrast to our interaction predicates, concur-
rency is eliminated and the behaviour is represented by lin-
ear sequences with the help of interleaving.

More common, in practice, than logical techniques are
graphical descriptions of interaction interfaces such as
MSCs (see [9]) that – in the special case of describing the
interaction between two components – are a graphical rep-
resentation of traces. An example is shown in Fig. 2. Here,
the labels to the left of E’s axis, and to the right of Q’s axis
denote E’s and Q’s state when sending or receiving mes-
sages, respectively. The italic labels to the right of the figure
describe the phase of the communication protocol. How-
ever, in contrast to MSCs that describe only one finite in-
stance of a case of interaction (also called a use case or sce-
nario), interaction interfaces represented by predicates char-
acterise all the observable interactions and, therefore, give
a comprehensive description of component requirements.

Example 1 (A simple two-way protocol) We study a sim-
ple, symmetric interaction protocol that supports the inter-
action between two components very much along the lines
of the ABRACADABRA-protocol (see [3]). In the ideal
case the interaction proceeds as shown in Fig. 2. In fact, the
idea of the protocol is that each of the components, as long

�� in the trace is arbitrary, since due to the causal independence of these
messages in each time interval they can be represented in any order.

E Q

sreqsreq

eack eack

idle

await_sack

await_eack

await_sack

idle

await_eack

Figure 3. Message Sequence Chart for Con-
flicting Interactions

as it is idle, is free to choose to become a sender and to start
a transmission activity with the other component that should
act as a receiver. A problem may occur in this protocol if
both components begin to act as a sender simultaneously
and so try to start their communication concurrently. An
idea to deal with this situation is that in such a case both
components terminate their transmission and retry later. An
MSC that describes this case is shown in Fig. 3.

From these two cases of interaction (the two use cases)
we may conclude the following requirements of the compo-
nents. The first message a component may send or receive
is the message sreq. If a component received the message
sreq it must send the message eack, if it did not send the
message sreq itself already before, otherwise it has to send
the message ereq. In the second case the transmission is
finished and the component gets into its initial state again.
Otherwise the communication proceeds by the component
receiving a data element and sending the acknowledgement
message dack in return. This ping-pong goes on until the
message ereq issued by the sender indicates the end of the
transmission.

Of course, this is a very simple case where the two use
cases do not overlap as this might happen for components
that may carry out several independent communications by
multiplexing. By the way, the question whether several use
cases described by MSCs should be carried out interleaved
or not is often not answered explicitly in the description
methods. In principle, it is necessary to add textual com-
ments that indicate in which way the MSCs should be inter-
preted. What is going on in the protocol can also be speci-
fied by a state transition diagram for the states of both com-
ponents as it is given in Fig. 4. We give only one half of it
since the other half is symmetric. Fig. 5 gives the state tran-
sition diagram for the individual component. Here the tran-
sitions are labelled by patterns of the form ����� where

Conflict Await_end

Idle/Idle Idle/Beginning

Sending

Receiving

r:sack

r:dackc:d

c:ereq

r:sreq

r:eack
c:eack

c:sreq

c:sreq
r:sreq

c:eack

r:sreq

r:eack

Figure 4. State Transition Diagram for the Sys-
tem with two Components.

�� is the input message that triggers the transition and ��

is the output generated in this transition. If the messages
�� or�� are replaced by “-” this means that no input is re-
quired to trigger the transition or no output message occurs
during the transition, respectively. A formal specification of

sending

await_eack await_sack

receiving idled/dack

sreq/sack

ereq/eack

-/sreq

sreq/eack

dack/ereq

sack/d

dack/d

eack/-

Figure 5. State Transition Diagram of the
Communication Protocol

this interaction interface is given by a predicate

� � ��
� �� � ������� �

where
 and � are the channels that connect the components.
Here

� � ����� � ���	 �
��	 � ���� � ���	�
�
where � is a set of data messages. To describe the inter-
action interface formally we first specify a family of simple
predicates �� � ��
� �� � ������� � by

���� � ����
� ����
� ������� ��
�
�

where the auxiliary predicate� is specified by the following
equation

���� ��
� � �
����� ��
�

� �����
������ ��
�

� ���
������ ��
�

� ����� ���	 ��� ��
�

� ����� ���	 ��� ��
�

Each predicate like �
�� , �����
��� , ���
��� , etc., speci-
fies the history of inputs and outputs until time point
 that
corresponds to the respective state of the automaton from
Fig. 5. We do not give the specifications for all state pred-
icates explicitly, since they can be schematically derived
from the state transition diagram as follows. To determine
the state predicate ���� ��
��� that corresponds to state �,
we consider all transitions whose target state is �. For each
such transition we add the disjunctive clause

����������� �� ��
����� � �� �
�� � ���
���

to the definition of ���� ��
���, if the transition starts
in state �� and is labeled with ����. Intuitively,
���������� �� ��
��� yields true if and only if the expected
input � has been received in state � � strictly before time
.
More precisely, we define

���������� �� �� ���� � false

���������� �� ��
����� � ������ ��
� � � �
 � ����

� � ���������� �� ��
���

� � �
 � ��

� � �
 � ���

Furthermore, we add the disjunctive clause

����� ��
� � � �
�� � �� � � �
�� � ���

which ensures that a component may remain in its state if it
neither receives input, nor produces output at time �
���.
If � is an initial state, we also define ���� �� �� � true, and
���� �� �� � false otherwise. This way the transition dia-
gram is translated into a set of inductively defined predi-
cates. As an example consider predicate �
�� , which is de-
fined as follows:

�
����� �� �� � true

�
����� ��
��� � �������������
��� � �� ��
��� �����

� � �
�� � ����	 ��

� ������������� ���	 � �� ��
��� ���	�

� � �
�� � ���

� ��
����� ��
�

� � �
�� � �� � � �
�� � ���

The other predicates are specified in the same style. For a
state predicate like �����
��� , we can use existential quan-
tification to denote that in each transition labeled with � a
different input value for � may occur.

So far we did not consider liveness properties. For the
protocol discussed above the latter are very simple since
each message requires exactly one reply. Moreover, if there
is a conflict, both components have to issue a message in re-
turn eventually. These two properties are subsumed by the
following definition:

��� � ��
 � � � �����

� ��
 � � � �
�����
� ����
� � �
������� ��
�
��
��

This gives the formal specification of the interaction inter-
face �. The state transition diagram in Fig. 5 can be gener-
ated fully automatically from the MSCs. �

We will not come back to the question of the automatic gen-
eration of state transition diagrams from MSCs in the course
of this paper. This is an issue we plan to investigate in a
forthcoming paper.

4. From interaction interfaces to component
specifications

In this section we introduce the concept of a system com-
ponent and show how to derive component specifications in
a systematic way from interaction specifications. A rela-
tional component specification is given by a predicate

� � �� � ��� � ��

that fulfils a number of simple properties with respect to
time flow. For a component specification we require the
following properties:

1. � is time guarded. Time guardedness of � is formally
defined as follows:

��
 � �� �

� ���
�� � � ������ � ���
�� � � �������

2. � is realisable. Realisability of the function � is for-
mally defined as follows:

� �� �� �
By

� �� we denote the set of time guarded functions

� � �� � ��

that are contained pointwise in the function � ; then,
formally, ���������� holds for all input histories � � �� .
The functions � are timed guarded, if:

��
 � �� �
� ������
�� � �������
��

� is called fully realisable if for all input histories � � �� we
have

�� � �� � � ������ � ���� � �� � � �

� ���

Only if a component is realisable we can give an imple-
mentation without any assumptions about the environment
in which it is used. The critical and in the course of the de-
velopment decisive step in the decomposition of a system
into subsystems is, after the interaction interface has been
specified, the transition from an interaction interface speci-
fication (where again � � �
� , � �� � �)

� � �� � �

to a component specification

� � �� � ��� � ��

for the components involved. We assume for simplicity
that the interface describes the interaction between only two
components called E and Q as illustrated in Fig. 1.

Again, the set of channels � connecting the components
E and Q is partitioned into input channels � and output
channels � for the component Q. This leads to compo-
nent specifications (for simplicity we identify the compo-
nent names with the names of the specifying predicates)

� � �� � ��� � ��

� � �� � ��� � ��

The interaction interface specification � defines the set of
possible communication histories for the channels between
the components E and Q. From � we deduce the require-
ments (specifying formulas) for the specifications E and Q.
We demonstrate how to do this only for component Q. For
component E this can be done in a fully symmetric way.

Technically, we show how to decompose the predicate
� describing the interaction between the two components
into two predicates for the specification of Q, called the as-
sumption � and the commitment �. The idea behind this
decomposition can be explained as follows.

The communication histories � � �� for the channels
in the interaction interface are divided by a restriction of �
onto the channels in the sets � and � into an input history
��� and an output history ��� , respectively. In general,

not for every valuation � � �� there exists a communication
history � with ��� such that � � ��� . The predicate � (for
guarantee) is used to characterise the set of output histories
� � �� that are admitted for the input histories �, which fulfil
the assumption �.

However, even for input streams � � �� for the component
Q that do not fulfil the assumption (in other words: there
does not exist a communication history � � �� such that

��� holds with ��� � �) the output of the component Q for
the input history � may be restricted by the specification. If
there exists a valuation� � �� such that��� holds and some
time point � � � such that ��� �� � ���, the output of Q
for the input history �must fulfil the requirements expressed
by predicate � at least until time point � according to our
requirement for time guardedness.

We work with the following predicates (for
 � �)

�� � �� � �� � �

�� � �� � �

that we use to construct the assumption predicate � for the
component Q based on the interaction interface specifica-
tion �. We specify them by the following equations (for all
times
 � �):

����� �� � ��� � �� � �� � �� �

�� �
 � ��
 � �� �
 � ��
 � ����
���
����� � �� � ���
��

The predicate �� characterises those input histories whose
finite prefixes until time point
 may actually occur on the
channels in � in the interaction between the components E
and Q. The assumption predicate�� defines the safety prop-
erties that can be assumed for the environment according to
the interaction as described in the interaction interface. The
assumption�� formalises the requirement that the complete
input history � does occur in an interaction. The require-
ments that the component Q is supposed to fulfil provided
the assumption holds are formalised with the help of the
auxiliary predicates (for
 � �)

�� � �� � �� � �

which we use to formulate the commitment. The predicate
�� is specified as follows

����� �� � ���� �� �
�� �
 � ��
 � ��
�� � �� �
��

� ����
���
Note the asymmetry in this definition in the treatment of �
and �. This is motivated by the requirement of time guard-
edness. We specify the component Q with the help of the
predicates ��, ��, and �� by the following formula:

������ � ��
 � � � ����� ��� ����� ���

� ������� ���
���
The first part of the formula defines the safety properties
for the component Q. The second part defines the liveness
properties for Q. The second clause may be weakened by
dropping those liveness assumptions the partner component

is supposed to take care of. We will come back to this point
in Section 5.

Note that the predicate�� subsumes all the predicates��

since the proposition

������ �� � �� � �
 � � � ����� ��

holds. This is a straightforward consequence of the defini-
tions of �� and ��. However, the reverse direction does not
hold, in general.

Note, moreover, that if the predicate� is consistent with
respect to time guardedness we have

�
 � �� � � �� �

����� ��� ��� � �� � ��
�� � �� �
���������� �
��

This is easily proved by induction on
. This shows that the
pure safety condition

������� � �
 � � � ����� ��� ����� ��

fulfils the property

�� � �� � �� � �� � ����� �� (1)

that indicates that the specification �� is consistent in the
sense that for every input history there exists an output his-
tory. We prove formula (1) by contradiction. Assume that
formula (1) is false. Then there exists some input history
� � �� and some time point
 � � such that for all output
histories � � �� we have:

����� �� � ������ ��

This is in contradiction to the time guardedness of � since
����� �� implies that there exists an input history ��, and an
output history �� such that the following formula holds:

�� �
 � ��
 � �� �
 � ��
 � ����
���

By time guardedness we obtain that there also exists an out-
put history ��� such that

�� �
 � ��
 � ��� �
�� � ��
�� � ����
�����

This proves the validity of the formula

����� �� ������ ���

which is a contradiction to the assumption that formula (1)
is false.

In fact, the step from an interaction interface specifica-
tion to a component specification can be done in a rather
systematic, canonical way due to the required property of
time guardedness.

As pointed out in Section 3, the computational model
associated with an interaction interface is rather straightfor-
ward. A chain ���� ��� of valuations by finite streams con-
sisting of pairs of histories until the time point
 is gener-
ated. In the �
���-th time interval the output of the com-
ponents on their output channels can be determined taking
into account only the history ���� ���

6. The transition from
an interaction interface to a component specification works
nicely for safety properties. In fact, these can be uniquely
determined for the components, but this does not hold for
the liveness properties. To make the methodological differ-
ence between safety and liveness properties precise we give
the following formal characterisation of safety and liveness.
A predicate � ��� �� is called a safety relation for a compo-
nent Q with input histories � � �� and output histories � � ��
if we have the validity of the following equivalence

� ��� �� � �
 � � � ��� � �� � ��
 � �� �
 � � ��� ���

� is called a liveness relation for the component Q if (for
all histories � � �� and � � ��)

�
 � � � ��� � �� � ��
 � �� �
 � � ��� ���

Note the asymmetry between the usage of histories � and �
in each of these formulas, which reflects the directedness of
input and output for the component Q. A detailed discussion
of the motivation for these differences is found in [4].

5. Decomposing liveness

The crucial difference between a liveness and a safety
condition in an interaction interface can be explained as fol-
lows: for a communication history that violates a safety
condition we can always find a minimal time interval in
which the condition is violated. This way it is always possi-
ble to determine precisely which of the components violated
the safety conditions7.

For liveness conditions the situation is more subtle. If
a liveness condition that is part of an interaction interface
is violated then we cannot always uniquely identify which
of the components is responsible for that violation. This
makes it more difficult to decide how to handle liveness
conditions when deriving component specifications from
interface specifications. In contrast, safety conditions are
uniquely determined for each component by a given inter-
face specification.

In the transition from an interaction interface to an indi-
vidual component specification the responsibility for safety

6Note that time guardedness is exactly what guarantees the possibility
of the independence of the choices of the output messages by the compo-
nent and by its environment.

7In extreme cases, both components violate the safety conditions inde-
pendently. Then both behave incorrectly.

properties is obvious. In the �
���-th interval the possible
messages on the channels in � determine the assumption for
the next step and the possible messages on the channels in
� determine the commitment of the current step. There-
fore, for a given interaction interface specification all safety
properties can uniquely be decomposed into safety proper-
ties for the component Q and for its environment E.

For the liveness properties this is, in principle, also true.
If we have to be prepared to deal with any possible be-
haviour included in the interaction interface for the other
component then we have to choose the liveness property as
strong as possible. It may be helpful to explain this slightly
more complicated situation by a simple example.

Example 2 (Decomposing Liveness Properties - Clock
Synchronisation) We consider the interaction between two
components representing clocks that from time to time send
a request signal to receive the actual time from the other
clock, say, to refresh their own time. Let us require in the in-
teraction interface description that the time exchange takes
place infinitely often. Of course, this can be achieved ei-
ther by requiring only for one of the components to send in-
finitely many requests for time signals or by requiring this
for both. This shows a case where there are several options
to decompose the liveness conditions of the interaction in-
terface into liveness conditions for the components. If this
condition is violated we cannot blame only one of the com-
ponents for this failure.

A liveness condition for both components that is strong
enough to guarantee the correctness, is, of course, the re-
quirement for each clock to issue a request signal, provided
the other component does not send it up to a certain time
point. However, if we know that the other component def-
initely follows that strategy the one component needs not
issue any request signal at all. In other words, in a re-
finement we either have to work with two specifications of
the components that are stronger than needed or we have
to work with a design decision introducing an asymmetry
between the two components by making only one compo-
nent responsible for a liveness condition. We can do this by
localising the liveness condition for one component when
moving from an interaction interface specification to a com-
ponent interface specification. �

A critical issue in the decomposition of an interaction in-
terface specification into component specifications is, there-
fore, the decision how to decompose the liveness require-
ments for the interaction into requirements for the indi-
vidual components. This actually requires additional de-
sign decisions, in general, as illustrated by the example
above. To indicate the freedom in the decisions we define
the canonical liveness predicate associated with the inter-
action interface specification � by the formula

 ��� �� � ���
�� � �!��� ��

where ! is the safety predicate associated with the interface
predicate � defined by the following formula:

!��� �� � �
 � � � ��� � �� � �� � �� �

��
 � �� �
 � ��
 � �� �
 � ����
���
The decomposition of the liveness predicate into strongest
predicates "� and "� for the two components Q and E is
quite straightforward. We specify these liveness predicates
for Q and E, respectively, by the equations:

"���� �� � ���� � �� � ���� ���� ��� ��

"���� �� � ���� � �� � ���� ���� ��� ��

However, in general, the predicates "� and "� are unnec-
essarily strong as a requirement for both components for
guaranteeing the liveness condition . Usually, they can
be weakened. In particular, every pair �" �

�� "
�

�� of weaker
liveness predicates will do the job provided the following
three formulas hold:

"�

���� �� � "�

���� ��� ��� ��

�� � �� � �� � �� � "�

���� ��

�� � �� � �� � �� � "�

���� ��

These requirements essentially say that the two liveness
conditions " �

� and "�

� for Q and E guarantee the required
global liveness condition included in the interaction inter-
face and for each component at least correct output histories
(with respect to liveness) exist.

In general, the choice of the liveness predicates "� and
"� obviously leaves freedom to the developer in assigning
the responsibility for certain liveness requirements to one of
the two components taking part in the interaction. Hence,
this step of decomposing liveness requires actually a joint
refinement including a design decision, in general, while for
the safety properties the responsibilities can be canonically
decomposed. When working with independent refinement
we have to work with the strongest liveness conditions "�

and "� .

6. Refinement of interaction interfaces

For components refinement is simple; it corresponds to
the implication relation. We repeat only the most important
notions of the refinement relation for components in the fol-
lowing. A component specification �� is called a (property)
refinement of a component specification �� if (for all input
histories � � �� and output histories � � ��) we have

�������� �������

Of course, from a methodological point of view such a re-
finement only makes sense if it refines a consistent specifi-
cation into a consistent specification.

6.1. Consistency of Specifications

For a component it is simple to specify consistency. A
component specification is called consistent if it is realis-
able. A useful refinement always leads from a consistent
specification to a consistent specification. For an interac-
tion interface specification notions of consistency and re-
finement are not so simple8. For components a meaning-
ful refinement of a consistent component specification is re-
quired to lead to a consistent component specification that
implies the original one. It does not make sense, however,
to carry over the definition of consistency for components
given above to interaction interface descriptions. Interac-
tion interfaces do only provide scenarios of interaction for
those input patterns that we expect to occur in the interac-
tion. If a certain input history does not occur in the interac-
tion, nothing is fixed about the behaviour in this case for a
component. Therefore, we derive from an interface specifi-
cation

� � �� � �

a component specification

� � �� � ��� � ��

as described in the previous section. In general, we do not
assume that � is total or time guarded. A component spec-
ification has to be total and time guarded, however. We de-
rive a canonical specification for the component � as fol-
lows. We require (for all � � ��):

�
 � � � ��� � �� � ��
 � �� �
�
���� � �� � ����
���

�
��� � �� � � ������ ��� � �� � �� �
�� � ��
��

� ����� ����
By this specification we require that for every input � and
every time point
 for all output histories � we have: for all
inputs �� which coincide with � until time
, either �� cannot
occur as input ������
��� for all ��) or there exists an out-
put �� with ����
��� that coincides with � until time
��.

6.2. Refinement Notions for Interface Specifications

A simple and obvious way to handle refinement of inter-
action interfaces is to base it on component refinement. The
idea is that both components involved in the interaction are
refined either simultaneously or independently. This may
reduce the set of possible interaction histories. However,
we distinguish between two ways to carry out the develop-
ment and the refinement of the components:

8Strictly speaking, an interaction interface is consistent, if there is at
least one allowed interaction history.

1. joint refinement considers a simultaneous refinement
of both components involved and therefore simultane-
ously a refinement of their interaction interface,

2. separated refinement refines one of the components in
isolation without knowledge of refinement steps for the
other component.

Given two interaction interface specifications (with sets of
channels � , � , � with � � �
� , � �� � �)

��� �� � �� � �

we call the specification �� an I-stable refinement of the
specification ��, if for all communication histories � � ��
we have the proposition:

������ �����

and

������ ��� � �� � ����
�� � ���� � ���

and �� is time guarded if �� is time guarded. An I-stable
refinement �� keeps all the communication histories in the
set of valuations �� of the channels in the set � which we can
find in the interface specification ��. Hence it allows for
an individual refinement of the component Q, where Q is
specified as in the previous chapter.

Refinement is generally based on the idea that the spec-
ification of the behaviour of a component contains some
underspecification. Underspecification means that the be-
haviour is not uniquely determined but leaves some freedom
of choice for the output for a given input. Operationally
speaking the behaviour is nondeterministic. For an interac-
tion specification we may define underspecification as fol-
lows: the interface specification� is underspecified with re-
spect to the component Q if for certain input histories � � ��
there are several distinct output histories �� �� � �� such that

���
�� � ���
���
In other words, for the input � the component Q is free to
react by the output history � or by � �. So it is a reasonable
refinement step for Q to go from the specification � to an
interface specification �� that holds only for channel valua-
tions �
� but not for the valuation �
� �. However, such a
step has another consequence. After carrying out this step,
the output history �� may no longer occur as a communica-
tion history in ��. Therefore, this step makes the specifica-
tion for the component Q stronger but the requirements for
the component E weaker since E has no longer to deal with
the input history ��.

Whether this idea of refinement is appropriate depends
on the way interaction specifications are used in a system-
atic, methodologically well-defined way. If an interaction

specification defines the way two components interact such
that they can be specified and implemented independently,
then the concept of refinement makes only sense if it keeps
the whole spectrum of possible behaviours for both com-
ponents. If the interaction specification is to be refined as
such in a joint refinement, we may gain more freedom in
the refinement.

The interaction interface specification�� is called a gen-
eral refinement of the specification �� for a set of channels
� decomposed into � and � if �� is both I- and O-stable.
A general refinement is a special case of an independent re-
finement of both components.

A way to carry out a refinement of interface specifica-
tions is zig-zag refinement. In zig-zag-refinement, we start
with an I-stable refinement. Then we do an O-stable refine-
ment. Then we repeat an I-stable refinement and so on, until
no further refinement is possible or appropriate. This way
the refinement of the two components is mutually depen-
dent. This dependency is not surprising. If we restrict the
set of possible output histories of one component the set of
input to which the other component is supposed to react in
a controlled way is reduced. This implies additional free-
dom for the second component. Zig-zag-refinement cor-
responds to independent refinement where the two design
teams refining E and Q independently exchange their cur-
rent specification after a while. This leaves room for further
refinements. Zig-zag refinement is a special case of joint re-
finement. If we perform an O-stable refinement, then for the
component with input channels I and output channels O we
obtain a more liberal safety condition, in general, since cer-
tain input may no longer occur and therefore the assumption
is strengthened. This way we may relax the requirements
for a component (resulting in an “anti-refinement”).

7. Realisability

The conditions of time guardedness guarantee the inde-
pendent choice of input and output. They, however, are not
strong enough to guarantee the realisability of the compo-
nents. The concept of realisability for interaction interfaces
is introduced in this section. To guarantee realisability of
the component specifications derived from an interaction
specification we have to require, in addition, realisability
conditions for the components requiring the validity of the
liveness predicates" �

� and"�

� . A component specification
� can only be implemented if it is consistent, namely if for
every input history � there exists an output history � such
that

�������

But in addition to consistency we can implement a com-
ponent (without additional assumptions about the environ-
ment) only if there is a way (we speak of a strategy) to fulfil

the liveness conditions in the interaction between the com-
ponent and its environment.

We have introduced the notion of realisability only for
component specifications so far. Realisability can be de-
fined and has to be studied also for interaction interfaces.
We call an interaction interface � � �� � � realisable if
there exist time guarded functions

� � �� � ��

� �� � ��

such that for � � �� , � � �� :

���� � � � #��� � �� ���
��
� is called fully realisable if there exist specifications Q and
E such that

���
��
�
��� # � � �

��� � ���� � � � # �

��� � #��� � ��

This implies that for the component Q (let the decomposi-
tion of the channels � into channels � and � be as before),
if there exists a time guarded function

� � �� � ��

such that � �

���, we have

�� � �� � ��� � �� � ���
���� ���
�����
Then for every feasible input history � for the component Q
the function � yields an output history ���� that fulfils the
requirements that are induced by the interaction interface
specification �. Realisability essentially means that there
exists a strategy for the component specified by Q (and also
for E) to react to input messages step by step by output mes-
sages such that the infinite stream generated this way fulfils
the liveness requirements. Obviously not every interface
specification is realisable. This means that we cannot al-
ways find an implementation for a component given an in-
teraction interface specification. A typical example would
be the following interface specification

���
�� � �� �� ��

Both component specifications deduced canonically from
this interaction interface are not realisable. The reason is
that both components cannot predict in the
-th time interval
the output of the partner component while preparing their
own output of the
-th time interval. However, in this case,
there is trivially a joint refinement of � leading to an inter-
action interface that is realisable. Therefore, in contrast to
component specifications the notion of realisability is not
monotonic with respect to interaction specification refine-
ment.

8. Conclusion

In the design of distributed systems it is often more sug-
gestive to describe the interaction between the components
at least for representative cases before we describe the com-
ponents themselves. The reason is that the interaction cap-
tures the essential idea of a system decomposition. Interac-
tion interfaces support this method of proceeding. A prag-
matic description of interaction interfaces used widely in
practice are MSCs (see [9]) that are perhaps more sugges-
tive and easier to comprehend than logical predicates. They
are more restricted and less expressive, however, than our
interaction predicates, since they provide only sample be-
haviours and not a complete description of all possible be-
haviours of the components involved. There are some inter-
esting similarities between the interaction interfaces inves-
tigated here, and the protocol and actor classes of ROOM
[10]. Protocol classes basically serve the purpose of defin-
ing syntactically the set of messages that a pair of com-
ponents may exchange via two of their connecting ports,
while actor classes define the behavior, in particular, the
communication sequences, exhibited by actors. [10] also
suggests to derive protocol classes and actor behavior - at
least partially - from scenarios captured during early design
phases. However, because the precise relationship between
scenarios and complete actor behavior is left unspecified in
ROOM, the former’s integration into the design process is
rather loose. Interaction interfaces, too, entail the syntactic
definition of the messages exchanged by the components
under consideration. In addition, as we have shown above,
it is - to a large extent - straightforward to integrate state-
oriented descriptions of component behavior, and interac-
tion interfaces. This stems, in part, from the fact that the
latter are not restricted to representing scenarios as (finite)
communication sequences; instead, they allow the designer
to describe the complete interaction behavior among a set
of components. From this we conclude that in order to inte-
grate graphical description techniques for component inter-
action, such as MSCs, seamlessly into an overall software
development process, their syntax and semantics should be
defined such that it allows an easy transition from (incom-
plete) scenarios to complete interaction descriptions. It is
a further interesting question, how, given a finite set of in-
stances of interactions, represented for example in terms of
MSCs, we can deduce a logical interaction interface speci-
fication. This question needs further investigations and ex-
periments.

Acknowledgments

The authors are grateful to Michael von der Beeck, Jan
Philipps, and Bernhard Rumpe for fruitful discussions on
this topic. We are especially indebted to Max Breitling, who

read a draft version of this text and provided valuable com-
ments. Our work was partially supported by the Sonder-
forschungsbereich 342 “Werkzeuge und Methoden für die
Nutzung paralleler Rechnerarchitekturen”, by the BMBF-
project KorSys, and the industrial research project SysLab
sponsored by Siemens Nixdorf and by the DFG under the
Leibniz program.

References

[1] G. Berry, G. Gonthier, The ESTEREL Synchronous Pro-
gramming Language: Design, Semantics, Implementa-
tion, INRIA, Research Report 842, 1988

[2] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Mod-
eling Language for Object-Oriented Development. Ver-
sion 1.0, 1996

[3] M. Broy, Some algebraic and functional hocuspo-
cus with ABRACADABRA, Technische Berichte der
Fakultät für Mathematik und Informatik, Universität
Passau, 1987, MIP-8717, also in: Information and
Software Technology 32, 1990, 686-696

[4] M. Broy, A Functional Rephrasing of the Assump-
tion/Commitment Specification Style, Technische Uni-
versität München, Institut für Informatik, TUM-I9417,
June 1994, Revised and Extended Version to appear in:
Formal Methods in System Design

[5] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
M. Stal, Pattern Oriented Software Architecture, A Sys-
tem of Patterns, Wiley, 1996

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns, Elements of Reusable Object-oriented Soft-
ware, Addison-Wesley, 1995

[7] GRAPES-Referenzmanual, DOMINO, Integrierte Ver-
fahrenstechnik, Siemens AG, Bereich Daten- und In-
formationstechnik, 1990

[8] I. Jacobson, Object-Oriented Software Engineering,
Addison-Wesley, ACM Press, 1992

[9] Message Sequence Charts (MSC), Recommendation
Z.120, Technical report, ITU-T, 1996

[10] B. Selic, G. Gullekson, P. T. Ward, Real-Time Object-
Oriented Modeling, Wiley, 1994

