
Software and System Modeling Based on a

Uni�ed Formal Semantics

Manfred Broy� Franz Huber� Barbara Paech�
Bernhard Rumpe� and Katharina Spies

Fakult�at f�ur Informatik� Technische Universit�at M�unchen
fbroy�huberf�paech�rumpe�spieskg�in�tum�de

Abstract� Modeling and documentation are two essential ingredients
for the engineering discipline of software development� During the last
twenty years a wide variety of description and modeling techniques as
well as document formats has been proposed� However� often these are
not integrated into a coherent methodology with well�de�ned dependen�
cies between the models and documentations� This hampers focused soft�
ware development as well as the provision of powerful tool�support� In
this paper we present the main issues and outline solutions in the direc�
tion of a uni�ed� formal basis for software and system modeling�

� Introduction

Computer technology for commercial applications has evolved rapidly frommain�
frames through personal computers to distributed systems� Software engineering
could not keep pace with the resulting demand for powerful application devel�
opment methods� This is exempli�ed by an ever growing number of software
projects running behind schedule� delivering faulty software� not meeting users�
needs� or even failing completely� There is a number of reasons for that� ranging
from inadequate project management� over communication problems between
domain experts and software developers to poorly documented and designed
software� A recent inquiry on industrial software developers �DHP���� has shown
that despite the great variety of CASE�tools� development methods� and model�
ing techniques� software development still largely produces informal� incomplete
and inconsistent requirements and design descriptions and poorly documented
code� Modeling techniques are used selectively� but not integrated with each
other or the coding� The large variety of proprietary modeling techniques and
tools makes it di	cult to choose an adequate selection for a project� As ex�
empli�ed by the newly evolving standard Uni�ed Modeling Language �BRJ�
��
the techniques provide a rich collection of complex notations without the cor�
responding semantic foundation� Since only static models are linked to code�
behavioural models can only serve as illustrations not worthwhile the big e�ort
of building the model�

This situation will only change if modeling techniques come with a set of
development steps and tools for incremental model development� consistency



checks� reasoning support and code generation� Mathematical description tech�
niques like Z �Wor��� or LOTOS �Tur�
� provide such development steps� but
their uptake by industry is hampered by their cumbersome notation� lack of
tools and lack of integration to established speci�cation and assurance techniques
�CGR�
�� Recently� a number of approaches for the combination of mathematical
and graphical modeling techniques has evolved �e�g� �Hu��
�BHH��
�� proving
the viability of the integration of selected modeling techniques and formalisms�
However� the integration of mathematical and graphical modeling techniques
covering the whole process of system and software development is still an open
problem�

The paper describes coherently the major issues in providing such an integrat�
ing basis� Experience on this subject has been gained mainly in the projects Fo�
cus �BDD��
�� SysLab �BGH��
b� and AutoFocus �HSS���� The project Fo�
cus is devoted to developing a mathematical development method for distributed
systems� SysLab concentrates on graphical description techniques� their formal
semantics based on Focus and their methodical use� in particular for object�
oriented systems� AutoFocus is building a tool aimed at the development of
distributed�embedded systems allowing the combined use of mathematical and
graphical description techniques and providing powerful development steps based
on the formal semantics� Its main application areas are components of embedded
systems� None of the projects covers the whole development process� but taken
together they provide a clear picture of the road to follow�

The paper is structured as follows� In the �rst section we introduce Focus�
the theory of stream processing functions� as the mathematical basis of our
work� First� we present Focus independent of a particular application area�
Then we show how to adapt it to object�oriented systems� Focus comes with
a set of notations and a methodology for developing formal speci�cations that
can only be touched on in this paper� Re�nement and compositionality provide
the foundation for the formal development steps� We close this section with a
discussion on the enhancement of formal notations to be useful for practitioners�

We then go on to describe the indirect use of Focus as the common formal
semantics for graphical modeling techniques used in software development� We
describe a set of graphical description techniques covering the main system as�
pects� These modeling techniques are similar to the ones used by structured or
object�oriented methods� However� they di�er in detail� because they were de�
veloped with a particular focus on a common formal semantics� The aim of that
section is to make explicit the most important issues in providing this semantics�

The indirect use of formal methods is very valuable to the method developer�
However� it is only useful to the system developer if the modeling techniques are
accompanied by powerful development steps that allow to check and enforce the
formal dependencies between the models� In the third section we discuss con�
sistency checking� model validation and transformation as the most important
development steps� together with possible tool support�

The modeling techniques and development steps must be integrated into a
process of system development� covering requirements de�nition� analysis� de�



sign and implementation� In the fourth section we present a framework making
explicit the di�erent modeling areas to be covered� namely the application do�
main� the system usage� and the software system� as well as the interplay between
di�erent system views and their corresponding modeling techniques�

We close with an outlook on future work� Related work is dicussed along the
way�

� Semantic Framework

In this section we describe the formal semantics as the basis for the descrip�
tion techniques and methodological aspects presented later� First we sketch the
mathematics of system descriptions treating object�oriented systems as a special
case� Then we present re�nement as a major constituent of formal system de�
velopment� After a short description of the formal system development process�
we close with an evaluation of the direct use of Focus� our general framework
for formal handling of distributed reactive systems�

��� Mathematical Basics

Focus incorporates a general semantics basis with some variants and a variety
of techniques and speci�cation formalisms based on this semantics� Here� we
only give a short and informal description of the main concepts and some simple
formulas� For further details� the interested reader is referred to �BS�
�BDD��
�
for an introduction and more formalization� and �BBSS�
� for an overview of
case studies� Besides Focus there are many other formal development methods
and description techniques like TLA� Unity or ProCoS� For further reading
and a comparison between these and many other formal methods like algebraic
or temporal logic approaches in combination with an uniform example we refer
to �BMS��a�BMS��b��

According to the concepts of Focus� a distributed system consists of a num�
ber of components that are partially connected with each other or with the envi�
ronment via one�way communication channels� Because our model is based on a
discrete global time and on channels comparable with unbounded FIFO�bu�ers�
the communication is time�synchronous and message�asynchronous� With the
behaviour of each component and the topology of the network � the connection
of components via the communication channels � the system is completely de�
scribed� The behaviour of a system can be deduced from the behaviour of its
constituents because the formal basis of Focus allows modular systems speci��
cation by compositional semantics�

Timed Streams

The basic data structure needed for the de�nition of component behaviour are
timed streams� Assuming global and discrete time we model time �ow by a special
time signal

p
�pronounced tick�� indicating the end of a time interval� A timed



stream is a sequence of
p

and messages that contains an in�nite number of time
ticks� Apart from the time ticks a stream contains a �nite or in�nite number
of messages� Let M be a set of messages that does not contain the time signalp
� By M� we denote streams of messages and by M� the set of in�nite timed

streams containing an in�nite number of ticks� To illustrate the concept of a
timed stream we show a simple example� The timed stream

a
p

ab
p p

bca
p

b
p
� � �

contains the sequence of small letters aabbcab� In the �rst time interval a is
communicated� in the third interval there is no communication� and in the fourth
interval �rst b then c and last a is communicated�

The special time signal
p

should not be understood as a message that is
transmitted� but as a semantic concept to represent the global time progress�
Timed streams model complete communication histories� A speci�c stream as�
sociated with a channel between two components contains all information about
what message is sent when between these components� Semantic variants of Fo�
cus abstract from time into the untimed model or describe� in the synchronous

model� streams in which in each time interval at most one message can be trans�
mitted between two components�

Component De�nition

A �system� component is an active information processing unit that communi�
cates with its environment through a set of input and output channels� To de�ne
a component� the interface must be declared at �rst� This contains a description
of its input and output channels as well as the types of messages that can be
received or sent via these channels� The behaviour of a component is described
by a relation between its input and output streams �xing the set of commu�
nication histories that are valid for this component� One way to describe this
relation is to de�ne a stream�processing function that maps input streams to sets
of output streams� Such a function reads an input stream message by message�
and � as a reaction � writes output messages onto the output channels� Stream�
processing functions must ful�ll semantic properties like continuity� realizability�
time�guardedness� as explained in the Focus�literature� Additionally it is pos�
sible to use state parameters to store control states or additional data and thus
ease the modeling�

Let I be the set of input channels and O be the set of output channels� Then
by �I� O� the syntactic interface of a component is given� With every channel
in I � O we associate a data type indicating the type of messages sent on that
channel�

To describe and to design the topology and the behaviour of distributed sys�
tems and their components� Focus o�ers di�erent graphical and diagrammatical
notations� All these description formalisms are well founded in the mathematical
framework described in this section� A graphical representation of a component
with its syntactic interface I � fi�� � � � � ing and O � fo�� � � � � omg� and the indi�
vidual channel types S�� � � � � Sn and R�� � � � � Rm is shown in Figure ��



f
: R

: Rm

: S11i

n: Sni

o1

o m

1

Fig� �� Graphical Representation of a Component as Data�ow Node

Given a set of channels C we denote the set of all channel valuations by C�
It is de�ned by�

C � �C �M��

Channel valuations are the assignments of timed streams to all channels in C�
We assume that the streams for the channels carry only messages of the correct
type speci�ed by the interface declaration�

We describe the behaviour of a component by a stream�processing function�
It de�nes the relation between the input streams and output streams of a com�
ponent that ful�lls certain conditions with respect to their timing� A stream�
processing function is represented by a set�valued function on valuations of the
input channels by timed streams that yields the set of histories for the output
channels

f � I � P�O�
and ful�lls the timing property of time�guardedness� This property ensures that
output histories for the �rst i�� time intervals only depend on the input histo�
ries for the �rst i time intervals� In other words� the processing of messages in a
component takes at least one tick of time� Thus� time�guardedness axiomatizes
the time �ow and supports the modeling of realistic applications� since the pro�
cessing of messages or the execution of computing steps always consumes time�
For a precise formal de�nition of this property see �BS�
��

��� Foundations of Object Orientation

Based on the theory given above� we have de�ned a set of concepts to enrich
Focus with an object�oriented �avor� This allows us to give a formal semantics
to object�oriented modeling techniques� like UML �BRJ�
�� as we have done in
�BHH��
��

For that purpose� we have de�ned a system model in �KRB��� that charac�
terizes our notion of object�oriented systems� Objects can be naturally viewed as
components� as de�ned in the last section� Based on that� communication paths
are de�ned using identi�ers� where each object is associated with exactly one
identi�er �its identity��

In the system model� objects interact by means of asynchronous message

passing� Asynchronous exchange of messages between the components of a sys�
tem means that a message can be sent independently of the actual state of the
receiver� as� e�g�� in C�� or Java� To model communication between objects we
use the Focus basic data structure of streams and stream�processing functions�



Objects encapsulate data as well as processes� Encapsulation of a process

means that the exchange of a message does not �necessarily� imply the exchange
of control� Each object is regarded as a separate process� Encapsulation of data

means that the state of an object is not directly visible to the environment
but can be accessed using explicit communication� The data part of the object
de�nes its state� It is given in terms of typed attributes�

Objects are grouped into classes� that de�ne the set of attributes of an object
and its method interface �message interface�� This allows to model the behavior
of the objects of each class c as stream�processing functions fc mapping input
histories to sets of output histories� As usual� classes are structured by an inher�
itance relation v� We thus get a natural de�nition of inheritance of behavior�
We postulate if a class inherits from another� its possible behaviors are a subset�

�c� d � Class� c v d � fc � fd

In case of method extension� this constraint is adapted to an interface re�nement
constraint�

Dynamic and mobile features� such as creation of new instances and change
of communication structures� are also characterized as extension of Focus�

��� Re�nement and Compositionality

Based on a �rst formal speci�cation� the development of software and also of
distributed systems goes through several development phases �or levels of ab�
straction�� Through these phases the envisaged system or system component
is described in an increasing amount of detail until a su	ciently detailed de�
scription or even an implementation of the system is obtained� The individual
steps of such a process can be captured by appropriate notions of re�nement�
In a re�nement step� parts or aspects of a system description are speci�ed more
completely or more detailed� For this purpose� Focus o�ers a powerful compo�
sitional re�nement concept as well as re�nement calculi� On the semantic level�
re�nement is modeled by logical implication� The important re�nement concepts
are�

Behavioural Re�nement� The aim of this re�nement is the elimination of
underspeci�cation as needed� e�g�� for the speci�cation of fault�tolerant be�
havior�

Interface Re�nement� Here� the interface of a speci�cation is re�ned by chang�
ing the number or types of the channels as needed� e�g�� for concretization
of messages or splitting communication connections between components�

Structural Re�nement� This concept allows the development of the structure
of the distributed system by re�ning components by networks of components�

��� A Formal System Development Process

Focus provides a general framework and a methodology in the large for formal
speci�cation and stepwise top�down development of distributed reactive systems�



The formal system development process consists of several phases of abstraction
and three main development phases�

During the Requirements Phase� a �rst formalization of a given informal prob�
lem description is developed� Since the informal description is often not detailed
enough� this �rst step of a system speci�cation is hard to develop� It is� however�
essential for the formal system development because it will be used as the ba�
sis for further development of speci�cations with a growing degree of accuracy
in the following phases� In this step� speci�cations can be formalized either as
trace or as functional speci�cations� The transition between these paradigms is
formally sound and preserving correctness�

During the Design Phase� the essential part of the system development� the
structure of a distributed system is developed by re�ning it up to the intended
level of granularity� These formal development steps are based on the speci�ca�
tion determined in the requirement phase and their correctness will be shown
relative to the �rst formalization� Because the formal development of a more
detailed speci�cation possibly uncovers mistakes or unprecise properties in ear�
lier formalizations� the top�down development is not linear but rather leads to
respeci�cations of some parts of earlier formalizations� Only the description of
system properties in a mathematical and precise manner gives a system developer
the possibility to formally prove and re�ne system properties and descriptions�
During this phase� speci�cations in Focus are based on the denotational seman�
tics which models component behaviour by stream�processing functions� For the
development of the speci�cations during the design phase� paradigms like re�
lational and functional speci�cations as well as several speci�cation styles like
Assumption�Commitment� or equational speci�cations are de�ned� To increase
its usability Focus is adapted to support various engineering oriented and prac�
tically used techniques and formalisms like tables or diagrams� see section 
�
Due to the speci�c natures of these variants they can be used tailor�made for
the solution of speci�c problems�

During the Implementation Phase the design speci�cation is transformed into
an implementation� This phase is subject of future work�

��� Further Work

Since the semantic foundation of Focus� including its development techniques�
have already been explored in depth� the emphasis of further work lies in bet�
ter applicability of the methodology� especially for system developers less ex�
perienced in formal methods� For that purpose� additional wide�spread descrip�
tion techniques� �semi��automatic and schematic proof support have to be of�
fered� Several techniques for describing and speci�ying systems �like tables�
state or system diagrams� MSC�like event traces �cf� Section 
���� the �Assump�
tion�Commitment� style� were successfully integrated in the methodology� With

� a special relational speci�cation style where the �Assumption� formalizes the con�
straints about the input histories that have to be ful�lled in order to guarantee the
behaviour of a component formalized by the �Commitment�� For further reading see
e�g� �Bro	
� and �SDW	��




AutoFocus� tool support for system development is already available� giving
future case studies a new quality by o�ering appropriate editors� consistency
checks� code generation and even simulation� Current research activities con�
cern the enhancement of Focus with methodical guidelines to ease the use of
the mathematical formalism� the description techniques and the development
methodology for non�specialists and to support solutions for speci�c application
�elds� like the modeling of operating systems concepts in �Spi����

Case studies are an important and stimulating work for testing Focus in
di�erent application areas� Focus will be further improved� using the experience
gained from the great number of case studies collected in �BFG����BBSS�
� and
future studies to come�

��� On the Direct Use of Formal Description Techniques

In the last sections we have sketched a mathematical framework and the semantic
basis for system speci�cation� This allows developers to precisely describe struc�
tural and behavioural properties of the components and the composed system�
As will be argued in section 
� one can hide the mathematics from developers
through the use of graphical description techniques whose semantics are based
on the formal framework� However not everything can be adequately expressed
in diagrams� Especially behavioural properties are di	cult to express� Thus for
example� object�oriented speci�cation methods typically use state transition di�
agrams to describe method acceptance in classes or collaboration diagrams to
describe method calls between classes� but only programming language code
to de�ne the method bodies� Mathematical speci�cation languages like Focus
allow complete behaviour description in a much more declarative style� To be
useful for practitioners� however� the notation must be simple and the speci�ca�
tion language must be enhanced with guidelines for a systematic development of
speci�cations� These guidelines are useful for developers formulating properties
of individual systems and application areas� as well as for method developers who
need to state and verify properties of the �diagrammatic� description techniques
on the basis of the formal semantics�

In the following we present an example of some guidelines to write down
formal speci�cations in Focus� To make formal speci�cation techniques and
methods more acceptable it is essential that the developer is in the position
to concentrate on the problem and not on the correctness of the formalization�
In Focus� equations on stream�processing functions describe the mapping of
patterns of input messages to patterns of output messages� �Spi��� proposes
a special strategy to formulate the required behaviour as structured text� The
translation of this text into a functional equation is supported by special schemes�
In the following we show such a scheme regarding a component C with one input
channel In and one output channel Out� where messages of type Integer �ow on
these channels� We require that C computes the square of each input message
and sends it on the output channel� For this input�output behaviour we give the
following textual description�



If the component C receives a message X � Integer on input channel
In� then C sends as reaction the square X� as output message on output
channel Out�

This structured text� which includes all information needed to specify the re�
quired behaviour� can be translated with the available schemes in the following
functional equation �here fC denotes the stream�processing function modeling
the behaviour of the component C��

fC�fIn� Xg � s� � fOut� X�g � fC�s�

� Description Techniques

A description technique can be best characterized as a specialized language to
describe a particular view of the systems to be developed� With the Focus
method� we can precisely de�ne our notion of a system� It is an important task
to de�ne an appropriate set of description techniques which allow developers to
describe properties of systems�

In the �rst subsection� we will describe the notion of description techniques
in general� how we treat them� and what the bene�ts of this treatment are�

��� Description Techniques	 Notations and Semantics

A description technique serves the purpose of describing particular aspects �views�
of a system� There exists a variety of graphical and textual description techniques
that allow to describe di�erent aspects�

A description technique comes along with


 a concrete syntax �this is the concrete layout of all documents��

 an abstract syntax �without �syntactic sugar���

 context conditions for wellformedness� and

 a semantics de�nition�

For a precisely de�ned description technique all four parts must be present� In
case of textual notations� concrete and abstract grammars are common for the
syntax� attributes on this grammar can be used for wellformedness conditions�
and the semantics is usually de�ned as a mapping from the syntax into an
appropriate semantic domain�

Similar techniques can be used for graphical notations� Each graphical nota�
tion basically de�nes a language of wellformed documents� which serves as the
syntactic domain� In order to use several description techniques to describe dif�
ferent aspects of the same systems� semantics de�nitions are necessary that map
the di�erent syntactic domains onto the same semantic domain� This is the ba�
sis needed to integrate the di�erent description techniques during development�
If we map di�erent notations onto the same semantic domain� we �meaning the
notation developer� can compute context conditions between di�erent notations�



which ensure consistency of several views onto a system� Moreover� we can justify
the correctness of translations from one notation into another one� e�g�� trans�
lating Message Sequence Charts into State Machines� or generating code� Last
but not least� we can justify the correctnes of re�nement calculi for the given
descriptions�

There are other bene�ts of de�ning a precise semantics� e�g�� the developer of
the semantics gains a deeper understanding of the used notations� However� usu�
ally this formal semantics de�nition cannot be communicated to method users�
but only the �informal� interpretation of the insights �FB�
�� Thus� the most im�
portant bargain of precise semantics is the possibility to automate development
steps�

Since graphical techniques usually are not powerful enough to describe �or
prove� every property of a system� it is often essential to translate the docu�
ments from a graphical notation into their �semantics� and use the power of
the semantic formalism to specify further aspects or verify required properties�
In our case� di�erent kinds of diagrams� such as SSDs �see Section 
���� can be
translated into formulas only using concepts of Focus�

In the following� we sketch the most important notations we have dealt with�
We sketch the purpose of the notation in a methodological context and the results
we have achieved on that notation� such as� semantics de�nitions or re�nement
calculi that have been developed�

We emphasize that it is important to also use explanations or other informal
kinds of diagrams and text during development� A good method does not only
deal with formal notations but also allows the systematic treatment of informal
documents�

The AutoFocus tool uses a subset of the description techniques introduced
below in variations that are tailored for the development of embedded systems
�see Figure ��� Graphical and textual editors are available to create and edit
speci�cations using di�erent views on an embedded system� Consistency be�
tween these views can be ensured� controlled by the developer any time during
the development process �see Section ����� From su	ciently detailed speci�ca�
tions� executable prototypes can be generated �see Section ����� Implementation
work on mapping graphical speci�cations into semantic domains� based on our
theoretical work� e�g�� to conduct proofs of correctness on speci�cations� is cur�
rently in progress �see Section ��
��

��� System Structure Diagrams �SSD�

System Structure Diagrams as used in AutoFocus �Figure �� upper middle� fo�
cus on the static structure of a system� They graphically exhibit the components
of a system and their interconnections� They describe the glass box view of a
Focus component and are therefore similar to ROOM charts �SGW���� These
diagrams focus more on the static part of a system and are not used in UML
�BRJ�
�� where everything is assumed to be highly dynamic�



Fig� �� AutoFocus Description Techniques� SSD� EET� and STD

Components may be hierachically decomposed� Therefore� for each non�ele�
mentary component an SSD can be de�ned� leading to a hierachy of SSD docu�
ments describing a hierachical system structure�

If a system �or system component� exhibits dynamic properties� like changing
the communication structure or creating�deleting components� the SSD can be
used to describe structural snapshots or the static part of the structure� In an
object�oriented �avor� an SSD de�nes a snapshot of data and communication
paths between a set of objects�

As SSDs describe the architectural part of a system� there exists a re�nement
calculus for architectures that allows to transform the internal structure of a
component by adding new components or changing communication paths� e�g��
without a�ecting the external behavior of the component �PR�
b�PR�
c��

��� Class Diagrams �CD�

Class Diagrams are the most important object�oriented notation� and are there�
fore part of UML �BRJ�
�� They are used to describe data aspects of a system
as well as possible structure layouts� In contrast to System Structure Diagrams�
which focus on the �instance level�� Class Diagrams focus on the �type level��



Each class may have several objects as instances� each association represents
links between corresponding objects�

Class Diagrams de�ne a large class of possible structures� To further detail
these structures� di�erent kinds of invariants are added� E�g�� associations have
multiplicities and additionally� it is possible to add predicates de�ned in our
Speci�cation Language SL �see below��

Class Diagrams are also used to de�ne the signature of a class and their state
space� The signature consists of a set of method de�nitions that also de�ne the
set of possible messages� The attributes de�ne the state space�

In �BHH��
� we have argued about the semantics of Class Diagrams� Al�
though Class Diagrams are a rather well understood technique� there are still
open questions how to treat aggregates�

��� Speci�cation Languages �SL�

Not every aspect of a system can or should be described using graphic techniques�
For example datatype de�nitions or additional constraints are best described us�
ing a textual notation� In UML� e�g�� OCL has been introduced for describing
a certain type of constaints� However� since OCL does not allow to de�ne data
types or auxilary functions� and based on our experiences with algebraic speci�
�cation techniques �BBB����BFG��
a�� we decided to de�ne an own language
for that purpose�

SL is an axiomatic speci�cation language based on predicate logic� resembling
Spectrum �BFG��
a�BFG��
b�� SL allows declarative de�nitions of properties�
Particularly� SL is used for the de�nition of pre� and post�conditions of tran�
sitions and for the de�nition of state invariants not only in single objects but
also between several objects in the Class Diagrams� In order to enable automatic
testing of veri�cation conditions� SL also incorporates concepts of functional pro�
gramming� especially from Gofer �Jon�
�� The step from high�level descriptions
towards executable code is facilitated� which in turn facilitates prototyping�

With the restriction to the executable sublanguage and furthermore to the
datatype de�nitions� an automatic translation into simulation code is possible�

We also have experimented with the higher order logic HOLCF �Reg��� as a
property de�nition language� in particular as a front end for the theorem prover
Isabelle �Pau����

��� Message Sequence Charts �MSC� and Extended Event Traces
�EET�

Message Sequence Charts and Extended Event Traces are both used to describe
the �ow of communication within exemplary runs of a part of a system� Con�
stituting a high level of abstraction� MSC are well suited to capture system
requirements� Moreover� MSC can be used for and generated by simulation� re�
spectively� We have developed di�erent �avors of this technique� One focuses on
synchronous message passing between di�erent components �BHS���BHKS�
�



and its semantics is primarily a set of traces� These are called Extended Event
Traces and are used in AutoFocus �Figure �� top right��

The other variant focuses on object�oriented systems and is more similar to
MSC��� �Int���� Both variants are compared and argued about their semantics
in �BGH��
a�� For EETs a set of operators was de�ned to combine them se�
quentially� in parallel and iterated� This allows not only to de�ne exemplary
behavior� but also complete sets of behaviors�

Currently� work is in progress to map EETs into State Transition Diagrams�

��� State Transition Diagrams �STDs�

Basically State Transition Diagrams �STDs� describe the behavior of a compo�
nent using the state of this component� But di�erent abstractions and therefore
�avors are possible� Thus STDs can be used early in the development �analysis�
and also in the design phase� when some kind of �lifecycle� of a component is
modeled� During detailed design and also prototyping� pre� and postconditions
of a certain form �executable� can be used to generate code�

We have explored and developed several versions of State Transition Di�
agrams that allow to capture more than just one input or one output ele�
ment on a transition� Usually a transition is attributed with a set of messages
�sometimes restricted to one message� to be processed during the transition
and a set of messages to be produced� There are timed and untimed vari�
ants� and there are variants incorporating pre� and postconditions on transitions
�RK���PR���GKR���GKRB���GR���Rum���PR�
a��

In the object�oriented �avor� State Transition Diagrams describe the lifecy�
cle of objects� In STDs� descriptions of state and behavior are combined� STDs
can be used at di�erent levels of abstraction that allow both the speci�cation
of an object interface as well as the speci�cation of individual methods� Re�ne�
ment techniques support not only inheritance of behaviour but also stepwise
re�nement of abstract STDs �Rum���� resulting in an implementation�

A textual representation of State Transition Diagrams can be given using
appropriate tables �Spi���Bre�
�� Hierachical variants of State Transition Dia�
grams are examined in �NRS��� and also used in AutoFocus �Figure �� bottom
left��

State Transition Diagrams are an extremely promising notation� as they on
one hand allow to describe behavior� while on the other relate it to the state
of a component� They allow to think in rather abstract terms of interaction
sequences� but can also be used to describe a strategy of implementation �and
therefore code generators�� It is therefore worthwhile to explore more precise
variants of STDs than the ones given in nowadays methods such as UML�

��
 Programming Language �PL�

The ultimate description technique is the target programming language� For
object�oriented systems� Java �GJS��� is a rather interesting choice for an im�
plementation language� as it exhibits a lot of desirable properties� It is not only



a language with a set of consolidated and clear concepts� it also exhibits some
notion of concurrency� which allows to implement the concurrency concepts of
Focus� Hence� we have had a closer look on Java� e�g�� selecting a suitable sub�
language which will be the target for our code generation from STD and MSC�

To include the programming language in a proper way into the formal de�
velopment process� a step has been taken in �PR�
a� towards a Focus�based
transitional semantics of conventional languages like Java�

��� Further Work

For some of the above described notations� we already have prototype tools�like
AutoFocus�that allow to edit and manipulate documents of that notation�
Several others still need consolidation� as the process of �nding not only a precise
semantics for given notations� but adapting the notation in such a way that it
is convenient to use and allows to express the desired properties� needs to do
examples�

Currently re�nement calculi on Class Diagrams and State Transition Dia�
grams are implemented�

� Methodical Ingredients

A software or system development method �see Section �� covers a variety of
di�erent aspects� Supplying description techniques� as introduced in Section 
�
is only one of these aspects� yet probably the most �visible� one� However� a
development method also contains a notion of a development process� a model�
how developers proceed during the development of a system in order to produce
the results �the documents� the speci�cations etc�� necessary for a complete and
consistent system description that ful�lls the requirements and ultimately results
in the desired software product�

Such a process model usually operates on di�erent levels of granularity� rang�
ing from a coarse view down to very detailed� even atomic operations on spec�
i�cation elements or documents� The former will be treated in more detail in
Section �� while the latter are covered in this section�

Methodical steps can basically be partitioned in two disjoint sets of oper�
ations on speci�cations� operations that modify the contents of speci�cations�
thus e�ectively yielding a di�erent �possibly re�ned� description� and operations
that change the �possibly informal� status of speci�cations� for instance from
a draft status to a status �validated�� indicating that certain properties of the
speci�cation are ful�lled in an informal process�

In the following sections� we give a set of examples for both kinds of steps
that have been treated in our work�

��� Completeness and Consistency

Generally� a system speci�cation� just like a program that is being written� is
neither complete nor consistent most of the time within a development process�



This is particularly the case in view�based systems development� which specif�
ically aims at separating di�erent aspects of a system description in di�erent
speci�cation units �speci�ation documents� for instance� that use appropriate
description techniques� From a methodical point of view� allowing inconsistency
and incompleteness during a development process is reasonable because enforc�
ing them at any time restricts developers way too much in their freedom to
specify systems� For instance� instead of concentrating on a certain aspect of a
speci�cation� developers� when changing parts thereof� would immediately have
to update all other speci�cation units that are possibly a�ected by such a change
in order to maintain a consistent speci�cation� Apart from diverting the devel�
opers� attention from their current task� this is virtually impossible in practical
development� especially with respect to completeness of speci�cations� Note that
the notion of consistency used here refers to the properties of the abstract syn�
tax �the �meta�model�� of the description techniques used to specify a system�
Semantic aspects� such as consistency of behavior with certain requirements� are
not treated in this context� This approach is quite similar to compilers for pro�
gramming languages� which can ensure the �consistency� of a program� but not
the correctness of the algorithm encoded in the program�

The AutoFocus tool� which uses a view�based approach to specify dis�
tributed systems� o�ers such a mechanism to test speci�cations for completeness
and consistency� System speci�cation is based on a subset of the description
techniques introduced in Section 
� namely� system structure diagrams� datatype
de�nitions� state transition diagrams� and extended event traces� The view spec�
i�cations covered by these techniques can be developed separately to a large
extent� Only at speci�c points in the development process� for instance� when
generating a prototype from a speci�cation �see Section ����� some global condi�
tions of consistency have to be ful�lled� Consequently� the consistency mechanism
available in AutoFocus is user�controlled and can be invoked at any time dur�
ing development� allowing to select both an appropriate set of speci�cations to
be checked and the �sub��set of consistency conditions to be applied�

��� Validation of Speci�cations

Today in practical systems development� validation techniques� in contrast to
formal veri�cation techniques� are widely used �BCR��� to gain more con�dence
in speci�cations and implementations ful�lling their requirements� However� only
veri�cation techniques can prove correctness� They will be treated in the next
section� Validation techniques are the focus of this section� They cover a broad
range of diverse techniques� such as


 review of speci�cations�

 systematic speci�cation inspection�

 �usability� test of software� or

 prototype generation and execution�

These techniques show di�erent facets of validation� For instance� testing
is usually applied to ensure that program code �the ultimate target of a de�
velopment process� ful�lls certain required properties� Reviews and inspections



techniques� in contrast to that� are applicable in virtually any stage in the de�
velopment process to ensure consistency and certain correctness aspects on an
informal level� Reviews� for instance� can be held about requirements documents
in the very early stages of a devlopment process as well on program code imple�
mented by developers� Prototype generation for a system or parts thereof can
be used once a speci�cation has been developed that is su	ciently consistent
and complete to validate the desired properties� Since a prototype� especially
an executable prototype in the form of a program� virtually brings a system
speci�cation �into life�� this kind of validation technique is relevant in commu�
nicating development results to customers� Prototyping has been successfully
applied particularly in areas like graphical user interfaces �GUI��

In software engineering� the usage of graphical formalisms that describe sys�
tems from a point of view rather close to an implementation is widespread�
Examples for such techniques are statecharts �HPSS�
� used in the StateMate

tool �Ilo���� or state transition diagrams as used in the AutoFocus tool� both
of which can basically be regarded as a kind of graphical programming language�
In such cases generating executable prototypes �or as well �nal implementation
code� is possible�

In the remainder of this section� we will take a brief look at such a prototyping
environment� the AutoFocus component SimCenter �HS�
�� It is based on
generating program code from a set of su	ciently detailed and consistent system
speci�cations and on observing the behavior of that prototype program in its
environment�

SimCenter works by generating Java program code from a speci�cation of
a distributed system� given in the AutoFocus description techniques brie�y
outlined in Section ���� The generated program code� executed in SimCenter�s
runtime environment� is linked to a visualization component where the progress
of the prototype execution can be monitored at the same level of description
techniques as used to specify the system� An obvious prerequisite for generating
such an executable prototype is that the speci�cation is su	ciently complete and
consistent in the sense outlined in Section ���� Nondeterminism� however� may
be present in the behavioral aspects of the speci�cation� It is currently resolved
by selecting one possible behavior in the code generation process� This approach
can be made more �exible for developers� for instance� by allowing them to select
one of several nondeterministic behaviors during prototype execution�

As the primary application domain of AutoFocus are embedded systems�
SimCenter allows to monitor the interactions of such a gerated prototype with
its environment� In particular� developers are able to inject stimuli into the sys�
tem and observe its reactions� both from its environment interface in a black box
manner and from the internal perspective� as outlined above� Additionally� black
box behavior of an embedded system prototype can be optionally observed and
in�uenced from a user�de�nable� application domain�oriented environment view
that can be attached to SimCenter via a standard communication interface�
This allows developers to build a very customer�oriented presentation of the be�



havior of such a prototype and thus supports communication between system
developers and application domain experts�

For technical details about the process and the basics of code generation in
SimCenter we refer the reader to �HS�
�� for an AutoFocus development case
study using SimCenter to validate certain correctness aspects of a speci�cation
of a simple embedded system� we refer to �HMS�����

��� Veri�cation Techniques

In contrast to informal validation� formal techniques allow developers to math�
ematically prove that a system speci�cation ful�lls certain requirements� As a
prerequisite� both the requirements and the speci�cations need to be formal�
ized using a common mathematical basis� thus allowing formal proofs to be
conducted�

Our goal is to integrate formal techniques as seamless as possible with some
of the description techniques introduced in Section 
� Within the AutoFoc�
us project two categories of veri�cation tools are currently under consideration
for an integration with graphical formalisms� First� veri�cation systems such
as PVS �ORS���� STeP �BBC����� or interactive theorem provers like Isabelle

�Pau��� in conjunction with HOLCF �Reg��� could be used to interactively prove
properties of a speci�cation� For that purpose� graphical speci�cations have to
be transformed into the speci�cation laguage used in the veri�cation system�
and developers have to conduct their proofs on this notational level� Obviously�
this approach is not very intuitive because it forces developers used to graphical
notations to use a more or less complex mathematical formalism to conduct
proofs�

Thus� the second category of tools� automated veri�cation tools like model
checkers seem to be more suitable for a seamless integration� Currently� a pro�
totype for the integration of the ��cke model checker �Bie�
� into AutoFocus
is implemented� It will check whether a concrete system speci�cation� given by
a component network and the corresponding behavioral descriptions� exposes a
re�nement of the behavior of a given� more abstract speci�cation�

��� Transformations

Transformations are methodical steps that e�ectively change a system descrip�
tion� Thus� each action that adds or changes speci�cation elements results in a
di�erent system description� Whether such modi�cations to speci�cations pre�
serve certain properties of a speci�cation that have been established before� is
not clear a priori and has thus again to be validated �or veri�ed� in case of a
formal development process�� For that reason� it is desirable as well as feasible
to have a class of methodical steps that allow developers to change speci�cations
in a way that previously established properties will still hold after the modi�ca�
tions �BHS���� Providing such property�preserving modi�cation steps for a set
of object�oriented description techniques is one of the main goals of the SysLab
project� Such property�preserving transformations are de�ned on the level of the



description techniques and provided for developers in the form of a syntactical
re�nement calculus that will be integrated in the toolset currently being de�
veloped within SysLab� These transformation rules are formally proven to be
property�preserving by the method developers and thus enable system develop�
ers to perform transformations on speci�cations on the syntactical level without
having to re�establish the validity of previously valid properties� Currently� such
transformation calculi exist for state transition diagrams �Rum��� and for system
structure diagrams �PR�
b�PR�
c�� and are being integrated into the SysLab
toolset� If developers choose not to use transformations provided by the re�ne�
ment calculus� but to modify their speci�cations in an arbitrary way� they have
to explicitly re�establish the necessary properties again�

��� Further Work

In the context of methodical development steps� tool�based active developer
support is a major area of work in the near future� One aspect consists of guiding
developers through the development process� o�ering them possible development
steps that can be or must be performed in order to develop a system�

Another important aspect consists of tracing the development steps applied
to speci�cations and their e�ects on other speci�cations� This pertains both
to syntactic consistency and completeness of the speci�cations and to possibly
invalidated semantic properties that need to be re�established after development
steps�

� A Model�Based Software Development Process

Up to now we have looked at formal modeling techniques� tool�support for model
development and analysis based on an integrating formal basis� and a formal
development process� The modeling techniques mentioned above aim at the de�
scription of the software system on various levels of granularity� In the following
we show that they can naturally be complemented with a set of description tech�
niques for the software system context and the informal problem description� We
will sketch a framework for a model�based development process� This framework
is made up of three main ingredients�


 the distinction between the world� the machine� and their interface �Jac���
and the explicit system models of all three of them�


 the distinction between the external view� the internal analysis view� and
the �distributed� design view of each system� and


 a careful deployment of formality�

The last issue has been discussed in the preceding sections� the �rst two will
be discussed in the following subsections� Depending on the application domain
and the project context this framework needs to be instantiated� We sketch an
example process for information system development at the end of this section�



��� The World	 the Machine and their Interface

The distinction between the world and the machine is due to Jackson �Jac����
The problem to be solved by a software system is in the world� the machine
constitutes the solution we construct� Phenomena shared by the world and the
machine make up the interface� Descriptions produced during software devel�
opment must be clearly associated to one of the these three domains� This is
especially di	cult for requirement documents� which typically contain references
to the world� namely the e�ects to be achieved by the software system� to the
interface� namely the system services� and to the machine� In particular� it is not
possible to describe the system services precisely without a clear understanding
of the relevant phenomena of the world� Therefore software engineering methods
� formal or pragmatic � typically start with informal descriptions of the issues
in the world relevant to the software system� These are then transformed into
so�called analysis models� The modeling techniques used for these models are
the same as the ones used for the description of the machine� Object�oriented
methods like OMT �RBP���� or OOSE �Jac��� use object models� structured
methods like SSADM �DCC��� use data�ow models� This is reasonable� because
the world and the machine can both be viewed as systems� thus allowing the use
of the same modeling techniques� However� there are semantical di�erences� in
object models of the software systems associations represent references directly
implementable in the programming language� Associations between objects in
the world represent invariant relationships which typically manifest themselves
as natural phenomena �e�g�� a person has a mother and a father� or as social
or legal processes �e�g�� a book has an author�� Also� the purpose of the mod�
els of the world and the machine is quite distinct� Models of the world capture
the understanding of important phenomena while models of the software system
capture requirements to be realized by the software system or document the
running system�

To make these distinctions explicit� we therefore distinguish three categories
of models�

Models of the world� They model the context of the software system� e�g��
a railway system or a lift to be controlled by the software system� or a
production company whose engineers are supported by software systems� In
particular� it is important to model the processes that the software system
is involved in�

Models of the interface� They model the phenomena shared between the
world and the machine� In particular� it is important to model the inter�
action between the software system and its external partners� The latter
may be humans or machines�

Models of the machine� They model the internals of the software system�
namely the internal components �e�g�� objects� subsystems � and how they
render the system services�



��� The External View	 the Internal View and the Design View

The world� the interface� and the machine constitute systems� They all consist
of actors� communicating with each other and executing activities making use of
their �data� ressources� Figure 
 collects elements of the three di�erent systems
in case of a railway control system�

actors data activities

world trains� passengers� timetable� position passengers enter and
conductor get o� the train�

train stops

interface train personnel� signals signaling� to switch
software system the points

machine objects� operating attributes assignment�
system processes method call

Fig� �� The world� the interface and the machine as systems

Software development methods traditionally either focus on the activities
and their data �ow �structured methods� or on the actors and their commu�
nication �object�oriented methods�� We claim that both views are important
during system development� and that a third view has made to be explicit� the
external view� The external view describes the services to be delivered by the
system� The activities describe steps to achieve the required services� We call
activities and their data the internal analysis view because at this level one ex�
periments with di�erent ways of achieving the services without regard for the
actors� The actors constitute the distributed design view� Activities and data
are encapsulated within actors such that data �ow between activities has to
be realized through communication� As exempli�ed by object�oriented designs�
an actor�oriented structure allows better reusability and extensibility of designs
than activity�structured designs�

Each of these views can be applied to the world� the interface� and the ma�
chine� To understand the purpose of the context of the software system� it is
usually helpful to describe the services of this context� In the case of the railway
control the services are the transport services o�ered by trains at particular lo�
cations and at particular times� In order to adequately understand the services�
the activities and data of the world have to be modelled quite extensively� The
actor structure of the world is frequently changed by introduction of the soft�
ware system since often human labour is replaced� Furthermore� it is very often
subject to a lot of political decisions�

The services of the interface are the work processes or technical processes
to be supported by the software system� Jacobsen �Jac��� has coined the term
use case for this� Very often there is a close correspondence between machine
and interface services� the latter being a high�level view of the former� The



internal analysis and the design view of the interface are heavily intertwined� In
the interface the actors are mostly given �humans and technical systems�� but
there is a choice of how to distribute the activities between the machine and the
external partners�

The services of the machine are determined by the design of the interface�
Typically� the external view and the internal analysis view of the machine is
heavily intertwined� because the services cannot be described without resorting
to the data of the software system� Often� also some parts of the design view
are �xed because the machine has to �t into an already existing landscape of
software systems� Thus� for example� one actor may be a particular database�
other actors may be given by a library of classes for a particular application
domain�

��� An Example Process

The discussions above can be captured in the following proposal for the deliv�
erables of an informations systems development process� In this short overview
we do not go into detail into the dependencies between the deliverables and the
possible timing of their production� The deliverables cover the external� inter�
nal� and design views for the world� the interface� and the machine� The formal
system descriptions and development steps discussed in the previous sections
are typically only used for the machine view� Only if the e�ects of the software
system in the world are critical �e�g�� chemical processes�� formalization of the
world and interface models will be worthwile�

Figure � lists the deliverables for developing a software system design�

View World Interface Machine

service

speci�ca�

tion

�textual
 description of
the enterprise services

use case model listing
the user tasks

system services �speci�
�ed in terms of their in�
put�output and�or the
data changes


data and

activity

analysis

glossary� application
domain processes

work processes or tech�
nical processes

data model described
as ERD or CD� data
changes described by
STD

actor and

commu�

nication

design

�textual
 description of
the responsibility �in
terms of data and ac�
tivities
 of the depart�
ments

�textual
 description of
user roles and technical
system partners� allo�
cation of data� and ac�
tivities to software sys�
tem

description of the
component�oriented
design by SSD� CD�
STD� EET

Fig� �� Products of a model�based software development process



The choice of the deliverables is in�uenced by SSADM �DCC���� especially
regarding the the machine service and analysis view� It has similarities to OOSE
in the use of use cases for the external view of the interface� The use of exem�
plary communication �ow descriptions like EETs in the machine design view is
borrowed from FUSION �CAB�����

Of course� these deliverables constitute only a framework to be instantiated
for di�erent application domains and projects� The interface models have to be
quite detailed in case of human�computer interaction with a new technology
�Suc���� The world models have to be quite detailed in case of a new or critical
application domain� Models of the software system should support a systematic
transition to code using the development steps described in Section ��

� Conclusion

The paper has discussed the issues of using formally founded description tech�
niques for system and software engineering� We have shown that formal methods
like Focus provide a rich basis for textual and graphical system descriptions as
well as the basic methodical steps for system development� This formal basis al�
lows an integrated view on the wealth of description techniques found in the lit�
erature� Equally important for the system developer are the methodical elements
based on the formal semantics� like consistency checks and transformations� For
real�world applications� this formal development process must be embedded into
a process of application domain �world� and usage �interface� understanding and
description� From our experience� each of these issues is worth its own project�
Our projects have demonstrated that it is possible to resolve each of these issues
on its own� restricted to a particular application domain� The challenge is now
to connect all of this together and to transfer it to new application domains�
This can only be achieved by a widespread use of these techniques in university
and industry�

Acknowledgments

We like to thank all the people who have contributed to the work presented
in this paper� especially those involved in the projects Focus� AutoFocus�
ForSoft and SysLab� Furthermore� we like to thank Bernhard Sch�atz for his
careful proof reading of the whole paper�

The authors of this paper were funded by the DFG�Sonderforschungsbereich

��� the project SysLab supported by DFG�Leibnitz and Siemens Nixdorf�
and the Forschungsverbund ForSoft supported by the Bayerische Forschungss�
tiftung�

References

�BBB���� F�L� Bauer� R� Berghammer� M� Broy� W� Dosch� F� Geiselbrechtinger�
R� Gnatz� E� Hangel� W� Hesse� B� Krieg�Br�uckner� A� Laut� T� Matzner�



B� M�oller� F� Nickl� H� Partsch� P� Pepper� K� Samelson� M� Wirsing� and
H� W�ossner� The Munich Project CIP� Vol �� The Wide Spectrum Language
CIP�L� LNCS ���� Springer�Verlag� �	���

�BBC�	�� N� Bj�rner� A� Browne� E� Chang� M� Col�on� A� Kapur� Z� Manna� H� B�
Sipma� and T� E� Uribe� STeP� Deductive Algorithmic Veri�cation of Re�
active and Real�Time Systems� In R� Alur and T� A� Henzinger� editors�
Computer Aided Veri�cation� �th International Conference� volume ����
of Lecture Notes in Computer Science� Springer� �		��

�BBSS	�� M� Broy� M� Breitling� B� Sch�atz� and K� Spies� Summary of Case Studies
in Focus � Part II� SFB�Bericht �
���
�	� A� Technische Universit�at
M�unchen� September �		��

�BCR	
� V�R� Basili� G� Caldiera� and H��D� Rombach� Goal Question Metric
Paradigm� In J�J� Marciniak� editor� Encyclopedia of Software Engineering�
pages �������� John Wiley � Sons� �		
�

�BDD�	�� M� Broy� F� Dederichs� C� Dendorfer� M� Fuchs� T� F� Gritzner� and R� We�
ber� The Design of Distributed Systems � An Introduction to Focus�
SFB�Bericht Nr� �
������	� A� Technische Universit�at M�unchen� January
�		��

�BFG�	�a� M� Broy� C� Facchi� R� Grosu� R� Hettler� H� Hu�mann� D� Nazareth�
F� Regensburger� O� Slotosch� and K� St�len� The Requirement and Design
Speci�cation Language Spectrum� An Informal Introduction� Version ����
Part �� Technical Report TUM�I	���� Technische Universit�at M�unchen�
�		��

�BFG�	�b� M� Broy� C� Facchi� R� Grosu� R� Hettler� H� Hu�mann� D� Nazareth�
F� Regensburger� O� Slotosch� and K� St�len� The Requirement and Design
Speci�cation Language Spectrum� An Informal Introduction� Version ����
Part �� Technical Report TUM�I	���� Technische Universit�at M�unchen�
�		��

�BFG�	
� M� Broy� M� Fuchs� T� F� Gritzner� B� Sch�atz� K� Spies� and K� St�len� Sum�
mary of Case Studies in Focus � a Design Method for Distributed Sys�
tems� SFB�Bericht �
�����	
 A� Technische Universit�at M�unchen� June
�		
�

�BGH�	�a� R� Breu� R� Grosu� Ch� Hofmann� F� Huber� I� Kr�uger� B� Rumpe�
M� Schmidt� and W� Schwerin� Exemplary and Complete Object Inter�
action Descriptions� In H� Kilov� B� Rumpe� and I� Simmonds� editors�
Proceedings OOPSLA��	 Workshop on Object�oriented Behavioral Seman�
tics� TUM�I	���� �		��

�BGH�	�b� R� Breu� R� Grosu� F� Huber� B� Rumpe� and W� Schwerin� Towards a
Precise Semantics for Object�Oriented Modeling Techniques� In J� Bosch
and S� Mitchell� editors� Object�Oriented Technology� ECOOP��	 Work�
shop Reader� Springer Verlag� LNCS ����� �		��

�BHH�	�� R� Breu� U� Hinkel� C� Hofmann� C� Klein� B� Paech� B� Rumpe� and
V� Thurner� Towards a Formalization of the Uni�ed Modeling Language�
In ECOOP� LNCS �
��� pages �

����� �		��

�BHKS	�� M� Broy� C� Hofmann� I� Krueger� and M� Schmidt� Using Extended Event
Traces to Describe Communication in Software Architectures� In Proceed�
ings APSEC��	 and ICSC��	�� IEEE Computer Society� �		��

�BHS	�� M� Broy� H� Hu�mann� and B� Sch�atz� Formal Development of Consistent
System Speci�cations� In M��C� Gaudel and J� Woodcock� editors� FME����
Industrial Bene�t and Advances in Formal Methods� LNCS �
��� pages
�
������ Springer� �		��



�Bie	�� A� Biere� E�ziente Modellpr�ufung des ��Kalk�uls mit bin�aren Entschei�
dungsdiagrammen� PhD thesis� Universit�at Karlsruhe� �		��

�BMS	�a� M� Broy� S� Merz� and K� Spies� editors� Formal Systems Speci�cation �
The RPC�Memory Speci�cation Case Study� LNCS ���	� Springer� �		��

�BMS	�b� M� Broy� S� Merz� and K� Spies� The RPC�Memory Speci�cation Problem�
A Synopsis� In �BMS��a�� pages ����� �		��

�Bre	�� M� Breitling� Formalizing and Verifying TimeWarp with Focus� SFB�
Bericht �
�����	� A� Technische Universit�at M�unchen� �		��

�BRJ	�� G� Booch� J� Rumbaugh� and I� Jacobson� The Uni�ed Modeling Language
for Object�Oriented Development� Version ���� �		��

�Bro	
� M� Broy� A Functional Rephrasing of the Assumption�Commitment Spec�
i�cation Style� Technical Report TUM�I	
��� Technische Universit�at
M�unchen� �		
�

�BS	�� M� Broy and K� St�len� FOCUS on System Development � A Method for
the Development of Interactive Systems� �		�� Manuskript�

�CAB�	
� D� Coleman� P� Arnold� S� Bodo�� C� Dollin� H� Gilchrist� F� Hayes� and
P� Jeremaes� Object�Oriented Development � The FUSION Method� Pren�
tice Hall� �		
�

�CGR	�� D� Craigen� S� Gerhart� and T� Ralston� Formal Methods Reality Check�
Industrial Usage� In FME� LNCS �	
� pages �������� Springer� �		��

�DCC	�� E� Downs� P� Clare� and I� Coe� Structured Systems Analysis and Design
Method� Application and Context� Prentice�Hall� �		��

�DHP�	�� B� Deifel� U� Hinkel� B� Paech� P� Scholz� and V� Thurner� Die Praxis der
Softwareentwicklung� Eine Erhebung� Submitted to publication� �		��

�FB	�� R� B� France and J��M� Bruel� Integrated Informal Object�Oriented and
Formal Modeling Techniques� In H� Kilov and B� Rumpe� editors� Pro�
ceedings ECOOP��	 Workshop on Precise Semantics for Object�Oriented
Modeling Techniques� Technische Universit�at M�unchen� TUM�I	���� �		��

�GJS	�� J� Gosling� B� Joy� and G� Steele� The Java Language Speci�cation�
Addison�Wesley� �		��

�GKR	�� R� Grosu� C� Klein� and B� Rumpe� Enhancing the SysLab System Model
with State� TUM�I 	���� Technische Universit�at M�unchen� �		��

�GKRB	�� R� Grosu� C� Klein� B� Rumpe� and M� Broy� State Transition Diagrams�
TUM�I 	���� Technische Universit�at M�unchen� �		��

�GR	�� R� Grosu and B� Rumpe� Concurrent Timed Port Automata� TUM�I 	����
Technische Universit�at M�unchen� �		��

�HMS�	�� F� Huber� S� Molterer� B� Sch�atz� O� Slotosch� and A� Vilbig� Tra�c Lights
� An AutoFocus Case Study� In International Conference on Application
of Concurrency to System Design� IEEE CS Press� �		��

�HPSS��� D� Harel� A� Pnueli� J�P� Schmidt� and R� Sherman� On the Formal Seman�
tics of Statecharts� Proceedings on the Symposium on Logic in Computer
Science� pages �
 � �
� �	���

�HS	�� F� Huber and B� Sch�atz� Rapid Prototyping with AutoFocus� In A� Wolisz�
I� Schieferdecker� and A� Rennoch� editors� Formale Beschreibungstech�
niken f�ur verteilte Systeme� GI�ITG Fachgespr�ach ���	� pp� ������
�
GMD Verlag �St� Augustin
� �		��

�HSS	�� F� Huber� B� Sch�atz� and K� Spies� AutoFocus � Ein Werkzeugkonzept
zur Beschreibung verteilter Systeme� In U� Herzog and H� Hermanns�
editors� Formale Beschreibungstechniken f�ur verteilte Systeme� pages ����
��
� Universit�at Erlangen�N�urnberg� �		�� Arbeitsberichte des Insituts f�ur
mathematische Maschinen und Datenverarbeitung� Bd��	� Nr� 	�



�Hu�	�� H� Hu�mann� Formal Foundations for Software Engineering Methods�
LNCS ��

� Springer� �		��

�Ilo	�� i�Logix Inc�� �� Third Avenue� Burlington� Mass� ������ U�S�A� Languages
of Statemate� �		��

�Int	�� International Telecommunication Union� Geneva� Message Sequence
Charts� �		�� ITU�T Recommendation Z�����

�Jac	�� I� Jacobson� Object�Oriented Software Engineering� Addison�Wesley� �		��
�Jac	�� M� Jackson� The World and the Machine� In ICSE��	� pages �����	
�

�		��
�Jon	�� M� P� Jones� An Introduction to Gofer� Manual� �		��
�KRB	�� C� Klein� B� Rumpe� and M� Broy� A Stream�based Mathematical Model

for Distributed Information Processing Systems � SysLab system model �
� In E� Naijm and J��B� Stefani� editors� FMOODS��� Formal Methods
for Open Object�based Distributed Systems� pages �������� ENST France
Telecom� �		��

�NRS	�� D� Nazareth� F� Regensburger� and P� Scholz� Mini�Statecharts� A Lean
Version of Statecharts� Technical Report TUM�I	���� Technische Univer�
sit�at M�unchen� �		��

�ORS	�� S� Owre� J� M� Rushby� and N� Shankar� PVS� A Prototype Veri�cation
System� In D� Kapur� editor� Proceedings International Conference on
Automated Deduction �CADE� ��
� Springer� �		��

�Pau	
� Lawrence C� Paulson� Isabelle� A Generic Theorem Prover� LNCS �
��
Springer�Verlag� �		
�

�PR	
� B� Paech and B� Rumpe� A New Concept of Re�nement Used or Be�
haviour Modelling with Automata� In FME���� Formal Methods Europe�
Symposium ���� LNCS ���� Springer�Verlag� Berlin� October �		
�

�PR	�a� B� Paech and B� Rumpe� State Based Service Description� In J� Der�
rick� editor� Formal Methods for Open Object�based Distributed Systems�
Chapman�Hall� �		��

�PR	�b� J� Philipps and B� Rumpe� Re�nement of Information Flow Architectures�
In M� Hinchey� editor� ICFEM��	 Proceedings� Hiroshima� Japan� IEEE
CS Press� �		��

�PR	�c� J� Philipps and B� Rumpe� Stepwise Re�nement of Data Flow Architec�
tures� In M� Broy� E� Denert� K� Renzel� and M� Schmidt� editors� Software
Architectures and Design Patterns in Business Applications� Technische
Universit�at M�unchen� TUM�I	�
�� �		��

�RBP�	�� J� Rumbaugh� M� Blaha� W� Premerlani� F� Eddy� and W� Lorensen�
Object�oriented Modeling and Design� Prentice�Hall� �		��

�Reg	
� F� Regensburger� HOLCF� Eine konservative Erweiterung von HOL um
LCF� PhD thesis� Technische Universit�at M�unchen� �		
�

�RK	�� B� Rumpe and C� Klein� Automata Describing Object Behavior� pages
�������� Kluwer Academic Publishers� Norwell� Massachusetts� �		��

�Rum	�� B� Rumpe� Formal Method for the Development of Distributed Object�
Oriented Systems �in German�� Herbert Utz Verlag Wissenschaft� �		��
PhD thesis� Technische Universit�at M�unchen�

�SDW	�� K� St�len� F� Dederichs� and R� Weber� Speci�cation and Re�nement of
Networks of Asynchronously Communicating Agents using the Assump�
tion�Commitment Paradigm� Formal Aspects of Computing� �		��

�SGW	
� B� Selic� G� Gulkeson� and P� Ward� Real�Time Object�Oriented Modeling�
John Wiley and Sons� �		
�



�Spi	
� K� Spies� Funktionale Spezi�kation eines Kommunikationsprotokolls� SFB�
Bericht �
�����	
 A� Technische Universit�at M�unchen� May �		
�

�Spi	�� K� Spies� Eine Methode zur formalen Modellierung von Betriebssys�
temkonzepten� PhD thesis� Technische Universit�at M�unchen� �		��

�Suc	�� L� Suchman�ed�
� Special Issue on Representations of Work� CACM� ���	
�
�		��

�Tur	�� K�J� Turner�ed�
� Using Formal Description Techniques � An Introduction
to ESTELLE� LOTOS and SDL� John Wiley � Sons� �		��

�Wor	�� J�B� Wordsworth� Software Development with Z� Addison�Wesley� �		��


