
Using Extended Event Traces to Describe Communication in Software
Architectures1

Manfred Broy, Christoph Hofmann, Ingolf Krüger, Monika Schmidt
Institut für Informatik

Technische Universität München
D-80290 München, Germany

{broy, hofmannc, kruegeri, schmidtm}@informatik.tu-muenchen.de

Abstract

A crucial aspect of the architecture of a software system
is its decomposition into components and the specification
of component interactions. In this report we use a variant
of Extended Event Traces [15] as a graphical technique for
the description of such component interactions. It allows
us to define interaction patterns that occur frequently
within an architecture, in the form of diagrams. The dia-
grams may be instantiated in various contexts, thus allow-
ing reuse of interaction patterns. Our notation contains
operators yielding not only exemplary but complete behav-
ior specifications. Extended Event Traces have a clear
semantics that is based on sets of traces. We present sev-
eral application examples that demonstrate the practical
use of our notation.

1 Introduction

Software architecture is considered as one of the keys
to modern software technology. Therefore, in recent years
software architecture has attracted a lot of attention in com-
puter science research [16][11]. Although no satisfactory
formal definition of the term software architecture (or
architecture, for short) exists to date, most researchers in
the field agree on the following architectural constituents:
components and their relationships.

We can describe various aspects of an architecture by
further specifying the kinds of components and relation-
ships we are interested in. Such aspects include, for
instance, data models, module structures and component

1This work was sponsored by the Bundesministerium für
Bildung, Wissenschaft, Forschung und Technologie (BMBF)
under the project ‘ENTSTAND’ and by the Deutsche Fors-
chungsgemeinschaft (DFG) under the project ‘Bellevue’.

distribution. This allows us to restrict our focus to certain
architectural views instead of having to deal with the archi-
tecture as a whole. An important architectural view is the
logical decomposition of a system into interacting compo-
nents (consider, for instance, objects in an object-oriented
application sending messages between each other). This
view allows us to either specify or analyze the overall com-
munication protocol of a possibly complex software sys-
tem.

The research for a description technique for communi-
cation in software architectures was motivated by our
project ENTSTAND (in cooperation with our industrial
partner sd&m2), where architectures of business informa-
tion systems and frameworks are specified and investi-
gated. An adequate notation for component interaction in
such architectures should be easily applicable, understand-
able, and based on a formal semantics. Furthermore, not
only exemplary but complete communication histories
should be describable.

In this report, we use a graphical notation for the
description of component interaction in software architec-
tures. Our notation is based on Extended Event Traces
(EETs, [15]), which are similar to Message Sequence
Charts [12]. We enhance this notation by additional opera-
tors that allow us to describe interaction architectures suc-
cinctly. The EETs can be translated to sets of traces of
system events in a straightforward manner. By formulating
predicates over these traces special properties can be
expressed. Our EET notation has a denotational semantics
based on traces of system events. In this report, we omit the
presentation of the formal semantics and refer the inter-
ested reader to [3].

Other specification techniques for component interac-
tion in software architectures, which also have a formal

2software design & management (sd&m) GmbH & Co KG,
München, Germany

semantics, often provide a less intuitive notation. For
instance, in WRIGHT [1], CSP processes are used both as
the notation for interaction specifications and their seman-
tics. In our opinion graphical description techniques are
better suited for application in industry because they
require less training than process algebras.

The remainder of this report is structured as follows. In
Section 2, we introduce our graphical notation, and provide
its semantics informally. Then, in Section 3, we give sev-
eral examples of EET specifications for software architec-
tures to demonstrate applicability of our notation and
indicate how additional properties can be specified by
predicates over traces. Finally, Section 4 contains our con-
clusions and directions for further work.

2 EETs for component interaction

In this section, we define the graphical notation that we
employ for the description of component interaction in
software architecture. In Section 2.1, we briefly discuss our
motivation for choosing the Extended Event Traces (EETs)
of [15] as the basis for our notation. In Section 2.2, we
illustrate the syntax and its informal semantics by means of
examples. Section 2.3 contains an outline of the relation-
ship between the informal and formal semantics.

2.1 Extended event traces

Event traces emerged in the field of telecommunica-
tions (see, for instance, [12]) and are now extensively used
in various modeling techniques, such as object-oriented
analysis and design methods [5][6] and architecture
descriptions [9][4] where they are used to describe exam-
ples of object interactions. Because of their simple graphi-
cal syntax and their intuitive concepts they are both
understandable and easily applicable without requiring a
lot of training. Often, however, their semantics is not for-
mally defined, which leads to ambiguities in specifications.

In [15], EETs are introduced as a graphical description
technique for component interaction, together with a for-
mal semantics. Their appearance is similar to that of Mes-
sage Sequence Charts. In contrast to the latter EETs offer a
smaller set of operators, which simplifies their understand-
ability.

Usually, event traces depict exemplary interaction sce-
narios for a certain set of components. In the area of soft-
ware architecture, however, we are interested in the set of
all interaction sequences that may occur during the lifetime
of the participating components. Another important
requirement for an interaction description technique is that
it offers the ability to compose specifications hierarchi-

cally, thus reducing the complexity of interaction struc-
tures, and offering the possibility to reuse specifications.

To summarize, the important properties and elements
of a description technique for component interaction in
software architecture are

• a graphical, intuitive and easy to use syntax

• operators for complete interaction descriptions

• operators supporting structuring and reuse of
interaction descriptions

• a formal semantics, based on clear concepts.

To address these issues, we use a slightly modified ver-
sion of EETs for our purposes. We enhance the structuring
mechanism of EETs from [15] by providing an instantia-
tion mechanism for interaction descriptions that allows us
to adapt EETs to various contexts. Furthermore, we intro-
duce an interleaving operator that enables us to succinctly
express EETs in which the order of some events is of no
relevance. In the following, we use the abbreviation EET to
refer to our modified graphical notation. References to the
original definition in [15] are stated explicitly.

In the remainder of this section we describe our graphi-
cal notation and explain its semantics informally. For the
presentation of the formal semantics of our notation we
refer the reader to [3].

2.2 Graphical notation

Every EET has a unique name and consists of a finite
set of interacting components that are identified by their
component names. Every component that participates in an
EET is depicted by a vertical axis (labelled with the com-
ponent name) representing the lifetime of that component
where time advances from top to bottom. In our approach,
the component names are regarded as formal parameters of
an EET. Thus, EETs can be combined and may be adapted
to a new context by substituting their component names.
This allows us to reuse interaction descriptions with differ-
ent axes labellings and, therefore, in different contexts. An
interaction (or event) is indicated by an arrow that is
directed from the initiator of the interaction to the destina-
tion component. Arrows may be labelled by an event name
together with an optional parameter list in parenthesis. No
two events are allowed to occur at the same point in time.
We assume message transmission to be instantaneous. Fig-
ure 1 shows an EET named “EET1” with three components
(named A, B and C) and four events (labelled e, f, g and h).

To reduce the number of EETs needed for an interac-
tion description, option and repetition indicators are pro-
vided by the graphical notation. An option indicator
(denoted by 0-) allows us to mark parts of an EET as
optional, whereas a repetition indicator (-*) denotes parts
that may occur repeatedly. Both types of indicators are
added to the right of an EET and their vertical expansion
designates their scope. Figure 2 depicts an EET where
event e is optional, whereas the sequence of messages f fol-
lowed by g may occur one or more times, before event h
occurs.

Furthermore, EETs can be hierarchically structured by
a box operator where the box can be instantiated by one of
the EETs contained in the set referenced within the box.
This set of referenced EETs must be non-empty and finite.
The referenced EETs have to be specified elsewhere. This
provides a means of maintaining readability in complex
EETs.

The meaning of a box referencing a finite set of EETs is
a finite choice: when the box is to be unfolded one element
from the set has to be chosen. Finite choice allows us to

describe alternatives in EETs without having to introduce
large numbers of option indicators, while maintaining the
intuitive readability of EETs. Note that if finite choice is
used in conjunction with a repetition indicator, a different
element of the set of possible selections may be chosen in
every repetition. EET3, depicted in Figure 3, denotes the
finite set of EETs in which the box named Choices is substi-
tuted by either EET1 or EET2. If the set referenced within a
box contains only one element, the latter may be named
directly in the box, thus omitting the set completely.

We do not allow cyclic or recursive references between
EETs; such constructs are used mainly to express repeti-
tion, which we handle by the explicit repetition operator.
Furthermore, omission of recursive references simplifies
understanding of the diagrams, because then, unfolding of
the boxes always leads to a finite set of finite diagrams. The
original definition in [15] explicitly allows recursive dia-
grams.

A CB

e

f

g

h

Figure 1. Simple EET

EET1:

A CB

0 - 1

1 - *

e

f

g

h

Figure 2. EET with optional and repeated parts

EET2:

A CB

0 - 1
a

b

Figure 3. EET with a finite choice box

Choices

Choices = {EET1, EET2}

EET3:

P Q

s

Figure 4. Recursive EET definition

Rec

Rec:

g

0 - 1

If we consider EETs as graphical representations of for-
mal languages the definition given in [15] leads to Chom-
sky-2-like structures, whereas we restrict ourselves to a
Chomsky-3-like language. Consider, for instance, EETs
Rec and Iter of Figure 4 and Figure 5, respectively. Due to
its recursive definition Rec can be used to specify the fol-
lowing two properties:

1.an equal number of s and g messages have to occur
between P and Q, and

2.no g message may precede any s message.

It is not possible to specify both properties graphically
in our restricted notation. Iter, which complies to our nota-
tion, specifies that any positive number of s messages may
occur before any positive number of g messages. The
equality of the numbers of the respective messages cannot
be addressed graphically. However, in Section 3 we show
how to overcome this limitation by introducing predicates
that specify additional properties of the EET, like, in our
example, the equality of the number of occurrences of s
and g messages.

As we treat the component names in an EET as formal
parameters, EETs can be adapted to a different context, i.e.
to different component names. This adaption is expressed
by adjoining to the name of the adapted EET the list of new
component names so that every (formal) component name
of the adapted component (in the labelling order of its
axes) is substituted by the component name of the new
context. For instance, EET2[D, E, F] is the same EET as
EET2 in Figure 2 with the component names A, B and C
substituted by the component names D, E and F, respec-
tively. Of course, the compatibility concerning the arity
and the naming of the axes of an EET corresponding to a
box with its “parent” EET has to be ensured.

Consider, for instance, EET4 in Figure 6, where the
EETs referenced in set Choices are adapted to their new con-
text.

If substitution is applied to a hierarchically structured
EET, the application is propagated all the way down the
hierarchy. Note that in the original definition in [15] EETs
could not be adapted to different contexts explicitly.

Finally, we introduce an operator to denote the inter-
leaving of EETs. Consider, for instance, EET5 in Figure 7,
which depicts the interleaving of EET6 and EET7. Intu-
itively, this means that events a, b, c and d may occur in any
order, provided that b never occurs before a and d never
occurs before c. The interleaving operator is an extension
of the original EET definition in [15].

2.3 Trace semantics

Intuitively, the semantics of an EET is the set of traces
obtained by recording all events while following all possi-
ble paths through the graph from top to bottom (cf. [3]).

P Q

s

Figure 5. Nonrecursive EET definition

Iter:

g

1 - *

1 - *

P RQ

0 - 1
a

b

Figure 6. Adaption of context

Choices

Choices = {EET1[P,Q,R], EET2[P,Q,R]}

EET4:

A B

a

b

A B

c

d

EET5:

EET6: EET7:

Figure 7. Interleaving operator

Here, a trace is a finite sequence of events where each
event is denoted in the following form

(S, R, mn, (v0, ..., vn-1))
S represents the component that sends the message

with name mn, and the component represented by R
receives it. The message may contain a list of parameters
(v0, ..., vn-1). An empty parameter list may be omitted.
Note that concrete values have to be substituted for the for-
mal parameters of the messages when building the trace.

3 EETs for example architectures

In this section, we give four examples of interaction
architecture specifications using EETs (some of them are
inspired by [1]). They demonstrate the practical use of all
operators introduced in Section 2.2. Although the examples
presented here are relatively small, EETs are applicable to
more sophisticated interaction architectures as well (cf.
Section 4).

3.1 Client/Server

The first example shows how the interaction of compo-
nents in a simple Client/Server system that consists of
exactly one client and one server can be modelled. The sys-
tem is then extended by additional clients communicating
with the same server. The interaction of a single client and
a server component can be described easily by the EET in
Figure 8.

The client sends a request message to the server. This
message is followed by a reply message in the opposite
direction. This message sequence may occur never, or may
be repeated finitely often.

Now, we want to extend this example by an additional
client that communicates with the same server. The com-
munication behavior of each client is as described in the
EET above. We assume that the server is able to process

the requests in parallel. After completely processing one
client’s request, the server sends back a reply message to
that client. The EET describing the explained interaction
architecture is depicted in Figure 9.

The EET in Figure 9 describes all system traces where
request and the corresponding reply messages may be
interleaved with two restrictions resulting from each oper-
and EET of the interleaving operator. These restrictions
are:

• Between any two request messages sent by a specific
client, that client has to receive a reply message from
the server.

• The server sends a reply message to a client only after
having received a request message from that client.

If a system with one server and n (n ∈ IN) clients is con-
sidered (where the interaction of each client with the server
is described as in Figure 8), the interaction architecture
would be described by the interleaving of n EETs.

This example shows how EETs may be used to specify
properties of a communication architecture elegantly. This
is in contrast to other formal specification techniques, such
as predicate calculus, where formulation of such properties
usually requires a substantial amount of work.

3.2 Shared variable access

This example allows us to show the use of the finite
choice operator in combination with axes renaming. The
mentioned system consists of two users sharing a common
variable. First of all, one of the users has to perform the ini-
tialization. Afterwards both of them can read or change the
value of the variable without any restrictions. These two
scenarios are separately described by the two EETs
depicted in Figure 10. EET Set represents the event that
occurs when the shared variable is set to some value; EET
Get describes the message exchange when reading the
shared variable’s value.

Client Server

request

reply 0 - *

Client/Server:

Figure 8. EET for the Client/Server interac-
tion architecture

Client1 Server

request
reply 0 - *

Client/Server_2:

Figure 9. EET for the interaction of two cli-
ents with a single server

Client2 Server

request
reply 0 - *

To describe the behavior of two users accessing the
shared variable, we use EET block specifications here, and
instantiate them to the special context of the example by
renaming their axes as shown in Figure 11.

Figure 11 describes all EETs resulting from the concat-
enation of EETs starting with one element of the set
SET_ACCESS followed by an optional and finite sequence
of elements of UNCONSTRAINED_ACCESS.

This example shows the advantage of using the finite
choice operator. Without it we would have to draw an EET
for all combinations of alternatives specified in the two
EET sets SET_ACCESS and UNCONSTRAINED_ACCESS of
Figure 11. This would result in a large number of EETs.
Therefore, boxes and the finite choice operator are an ele-
gant notation allowing us to represent the complete interac-
tion architecture of a system with exactly one EET.

In most cases, boxes represent interaction patterns that
are typical for the system under consideration. Therefore,
by use of boxes EETs become more structured and are eas-
ier to read and understand.

3.3 Observer pattern

Patterns [9] [4] provide an intuitive, albeit informal,
presentation technique for (parts of) software architectures.
Pattern descriptions consist of a problem statement and the
solution to the problem in a certain context. Usually, inter-
action scenarios of the components participating in the
solution are graphically described by event traces. Here,
we will demonstrate applicability of our notation for that
purpose.

As an example pattern, we consider Observer [9].
Observer presents a solution to the following problem:
Given a component whose state changes frequently, and
other components that are dependent on this state. How can
the latter’s states be kept consistent with the former’s? An
application of the Observer pattern can be found in [4],
where it forms the basis for the well-known Model-View-
Controller architecture.

The structure of the solution, depicted as a class dia-
gram using an OMT-like notation [14], is given in Figure
12.

In [9], the authors present a more general solution using
inheritance. We focus on the interaction scenario, hence we
deal with this simpler version.

The participants in this architecture are Subject and a
number of Observers. Every Observer that wants to receive
notification of state changes in the Subject registers with

data(value)

getset(value)

Figure 10. Variable access

U V

Set:

U V

Get:

User1 User2Shared_Var

UNCONSTRAINED_ACCESS

SharedVariable:

Figure 11. Shared variable access

SET_ACCESS

SET_ACCESS =
{Set [User1, Shared_Var],
Set [User2, Shared_Var] }

0 - *

UNCONSTRAINED_ACCESS =
{Set [User1, Shared_Var],
Set [User2, Shared_Var],
Get [User1, Shared_Var],
Get [User2, Shared_Var]}

Figure 12. Simplified structure of the
observer pattern

Subject

attach(Observer)

detach(Observer)

getState()

observers

subject

changeState(State)

Legend:

Class X

 single association

 multiple association

Object

update()

putState(State)

X

the latter by sending message attach. To decouple from its
Subject an Observer sends message detach. Whenever the
Subject’s state is changed via changeState, all registered
Observers are notified by an update event. They may then
request to receive the updated state by sending message
getState, which causes Subject to return a putState event.

We now specify this interaction architecture graphi-
cally. We focus on the update mechanism and omit the reg-
istration and decoupling operations. For this example, we
assume that the number of Observers that have attached to
a single Subject is n, n ∈ IN. Two basic interaction scenar-
ios are depicted by EETs in Figure 13. The first one (State-
Change) describes the sending of message changeState
from an Observer to the Subject, the second one (Single-
Update) expresses the notification of an Observer and the
subsequent request for and transmission of the changed
state between Observer and Subject.

Note that, as described by SingleUpdate, the Observer
has to request and receive the updated state. By means of
an option indicator we could easily specify the state
request and reply mechanism as optional for the Observer,
thus yielding a variant of the pattern. Next, we describe the
notification of all Observers by a single Subject. We use the
interleaving operator to denote that the order in which the
Observers are notified does not matter (cf. Figure 14).

Now, we combine EETs StateChange and Update to
yield a communication architecture for the Observer pat-
tern, where state changes are requested by one Observer at
a time, followed by an update broadcast to all registered
Observers (cf. Figure 15).

Note that the interaction architecture, as depicted in
Figure 15, forbids interleaved sending of changeState
requests by different Observers. Instead, it specifies that
first the complete update cycle is processed, before another
changeState request is handled by the Subject. Of course,
other request handling strategies could be specified as well.

This example, again, demonstrates that our graphical
notation allows us to specify interaction architectures
including all participating components during the lifetime
of the system, which is an interesting extension of the
example scenarios presented in [9] and [4].

Properties of interaction scenarios are, if at all, stated
informally in pattern descriptions. An example of such a
property is that within one update cycle every Observer
receives the same state value. In [3] we show how such
properties can be formalized straightforwardly, thus reduc-
ing the ambiguity arising from incomplete or informal
descriptions. The following section contains an example of
such a formalized property.

3.4 Pipe

The last example we study is a more complex one spec-
ifying a pipe architecture with a writer that writes mes-
sages to the pipe and a reader that reads messages from the
pipe. The interaction with the pipe can be closed indepen-
dently by the writer or the reader. If the reader gets an

changeState
(state)

S O

update

S O

getState

putState
(state)

Figure 13. State change of the subject and
state transmission to a single observer

StateChange: SingleUpdate:

Update:

Figure 14. Updating the state information of
all registered observers O0, ..., On-1 with
subject S

S O0

SingleUpdate
[S, O0]

S On-1

SingleUpdate
[S, On-1]...

S On-1O0

Update

Observer:

Figure 15. Observer interaction architec-
ture after attachment of observers O0, ...,
On-1 with subject S

State_Change

State_Change = {StateChange[S, O0],
...,
StateChange[S, On-1]}

0 - *

...

eof_msg message, which appears when the writer has
closed its connection, then the reader has to close its con-
nection eventually, as well. If, on the other hand, the reader
decides to close the pipe the writer can continue writing to
the pipe.

Again, we specify the interaction architecture by typi-
cal interaction patterns. Figures 16 to 18 depict four EETs,
each representing such a pattern.

EET Write (see Figure 16) shows the message the
writer sends to the pipe in order to write a value to the pipe.
Read describes the interactions taking place when the
reader reads a value from the pipe. First the reader has to
send a read message and then receives a message from the
pipe that contains the value as a parameter.

Figure 17 describes the situation when the writer closes
its connection to the pipe without the reader having closed
the connection until now. First the writer sends a close
message to the pipe, then the reader can read from the pipe
until the latter sends an eof_msg. Afterwards the reader has
to close the connection as well.

If the reader component is the first one that closes the
connection, the writer may send write(value) messages to

the pipe until it closes the connection as well (see Figure
18).

To describe the behavior of the pipe interaction archi-
tecture, these EETs are composed to form the EET of Fig-
ure 19. Note that we did not have to perform a context
adaption in Pipe because the referenced EETs already have
the right context.

Looking at the EET depicted in Figure 19, the structure
of the system behavior is obvious: after an initial phase of
writing to and reading from the pipe repeatedly, either the
writer or the reader closes the pipe (one element of
CLOSE).

Note that we cannot specify the FIFO property, which a
pipe typically has, in our graphical notation. Our trace
semantics, however, allows us to formulate predicates over
traces. Such predicates may be used to restrict the set of
traces described by an EET, thus yielding only the traces

Figure 16. Read and write scenario

ReaderPipe

Write:

read

Writer Pipe

write(value)

Read:

data(value)

eof_msg

close

read

Figure 17. “Writer closes” scenario

Writer ReaderPipe

WriterCloses:

data(value)

0 - 1

close

0 - *
read

Figure 18. “Reader closes” scenario

Writer ReaderPipe

write(value)

close
0 - *

close

ReaderCloses:

Figure 19. Pipe interaction architecture

Writer ReaderPipe

PIPE_ACCESS 0 - *

CLOSE

CLOSE = {WriterCloses,
ReaderCloses }

PIPE_ACCESS = {Write, Read }

Pipe:

with the desired properties (such as FIFO). To demonstrate
this approach we show how to specify the following prop-
erties of our pipe architecture by means of predicates:

• the pipe has FIFO behavior

• the pipe transmits an eof_msg message to the reader
only after all data messages have been delivered.

To formulate the corresponding predicates we intro-
duce some notation. By Msg we designate the set of all
events. We represent traces of events as finite streams over
set Msg. A stream over a set M is a finite or infinite
sequence of elements from M. By M* we denote the set of
finite sequences of elements from M. The empty stream is
denoted by ε and the powerset of M is denoted by ℘(M).

Without formal definition, we use the following opera-
tors on streams over set M:

& : M × M∗ → M∗

: M∗ → IN
<.> : M → M∗

° : M∗ × M∗ → M∗

 : ℘(M) × M∗ → M∗

. . : Mω × Mω → IB

By IB = {true, false} and IN we denote the set of Bool-
ean truth values and the set of natural numbers, respec-
tively. For m ∈ M, s, t ∈ M∗ and N ⊆ M the purpose of
these operators can be described as follows: m&s yields the
stream whose first element is m and then continues as s. #s
determines the length of (i.e. the number of elements in) s.
The term <m> denotes the stream consisting of only the
element m. s°t yields the stream obtained by prepending
stream s to stream t. Ns yields the stream obtained from s
by removing all elements not in N. denotes the prefix
ordering on streams. We write s t if s is a prefix of t. For
a formal definition of these operators and their extension to
infinite streams cf., for instance, [7][8].

Furthermore, we define the following function and
abbreviations (MN and VAL denote the set of message
names and the set of parameter values, respectively):

msgName : Msg → ΜΝ
Mdata = {m ∈ Msg : msgName.m = data}
Mwrite = {m ∈ Msg : msgName.m = write}
paramValues : Msg∗ → VAL∗

where msgName.m denotes the name of message m.
Hence, Mdata and Mwrite denote the subsets of Msg con-
taining all events labelled with data and write, respectively.
For any t ∈ Msg∗, paramValues.t yields the stream consist-
ing of the parameter tuples of the messages in t.

Now we are ready to formulate the properties men-
tioned above by means of predicates. An appropriate predi-
cate for the FIFO property is as follows (t ∈ Msg∗):

PFIFO.t ≡
(∀ t’: t’ ∈ Msg∗ :

t’ t ⇒ paramValues.(Mdata t’)
paramValues.(Mwrite t’))

Intuitively, PFIFO.t states that in any prefix t’ of t the
substream of t’ containing only the parameter values of
data messages is a prefix of the substream of t’ that con-
tains only the parameter values of write messages. Hence,
there are at most as many data as write messages in t’, and
the parameter values of corresponding write and data mes-
sages are the same.

PEOF ensures that the reader has read all messages from
the pipe before an eof_msg message is transmitted (t ∈
Msg∗):

PEOF.t ≡(∀ t’: t’ ∈ Msg∗ :
t’ ° <(Pipe, Reader, eof_msg)> t
⇒ # (Mdata t’) = # (Mwrite t’))

The resulting predicate that describes the desired inter-
action properties of the pipe architecture is therefore (t ∈
Msg∗):

PPIPE.t ≡ PFIFO.t ∧ PEOF.t

Thus, the set of all desired traces in our pipe example is

{t ∈ [[Pipe]] : PPIPE.t},

where [[Pipe]] denotes the set of traces as described by
EET Pipe of Figure 19. For the details of our semantic
treatment of EETs we refer the reader to [3].

4 Conclusion and further work

In recent years, caused by the growth of both the size
and the complexity of software, the importance of software
architecture has increased. Two important parts of an archi-
tectural description of a software system are the specifica-
tion of the participating components and their interaction.
Therefore, we enhanced the EETs of [15] to provide an
adequate description technique for component interactions
with an underlying denotational semantics.

As shown by the examples in Section 3, EETs provide a
very intuitive graphical notation for the description of com-
ponent interaction. Boxes allow us to structure the EETs
and thus, help to increase the readability and to reuse inter-

action patterns by adapting them to a new context. The rep-
etition indicator and the choice operator, as well as the
interleaving operator are an additional means to structure
complex EETs. Furthermore, these powerful operators
enable the developer to specify all communication histories
of an interaction protocol. Additionally, the user can spec-
ify more sophisticated interaction properties by providing
predicates over the trace sets corresponding to an EET
directly.

The notation of EETs is similar to that of Message
Sequence Charts, which are well known and extensively
used in various modelling techniques. Similar notations are
also used to describe communications in design patterns.
The granularity of design patterns varies from particular
design problems [4][9] to designs of complex system archi-
tectures [13]. To date, all pattern descriptions have in com-
mon, that component interactions within patterns are
described by exemplary scenarios. EETs, on the other
hand, can be used to describe complete interaction behav-
ior and, thus, can reduce the ambiguity of pattern descrip-
tions (see [3]). The reuse of design ideas is supported by
the EET notation, because boxes with substitution in EETs
allow us to reuse interaction protocols in various contexts.

There are three main areas for further work: First, the
language of the EETs has to be evaluated and additional
useful operators should be investigated. For instance, we
are experimenting with notations for the specification of
broadcast messages to groups of components and operators
for component creation and deletion. Such operators are
especially useful when applying the notation to complex
architectures, such as the relational database access layer
described in [13]. Second, we will investigate how EET
descriptions may be integrated into the whole development
process. The formal semantics presented in [3] allows us to
relate EETs with other description techniques (such as
State Transition Diagrams [10][2]), thus supporting multi-
ple views on the system under development consistently. A
crucial aspect in this context is ensuring compatibility of a
given component with an interaction architecture specified
by EETs. Finally, methodological questions have to be
examined, e.g. which interaction properties should be spec-
ified with EETs and which properties should be specified
by predicates.

Acknowledgements

The authors are grateful to Markus Kaltenbach, Bar-
bara Paech, Bernhard Rumpe, Bernhard Schätz, and Marc
Sihling for stimulating discussions about draft versions of
this work, and to the anonymous referees for their com-
ments.

References

[1] R. Allen, D. Garlan. Formal Connectors, Technical Report
CMU-CS-94-115, School of Computer Science, Carnegie
Mellon University, Pittsburgh, USA, 1994

[2] M. Broy. The Specification of System Components by State
Transition Diagrams, Technical Report TUM-I9729, Tech-
nische Universität München, 1997

[3] M. Broy, C. Hofmann, I. Krüger, M. Schmidt. A Graphical
Description Technique for Communication in Software
Architectures. Technical Report TUM-I9705, Technische
Universität München, 1997

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M.
Stal. A System of Patterns. Pattern-Oriented Software Archi-
tecture. Wiley, Sussex, 1996

[5] G. Booch. Object-Oriented Analysis and Design with Appli-
cations. 2nd ed. Addison-Wesley, CA, 1994

[6] G. Booch, J. Rumbaugh, I. Jacobson. The Unified Modeling
Language for Object-Oriented Development, Version 0.9,
1996

[7] C. Facchi. Methodik zur formalen Spezifikation des ISO/
OSI Schichtenmodells. PhD-Thesis. Technische Universität
München, 1995

[8] C. Facchi. Formal Semantics of Time Sequence Diagrams.
Technical Report TUM-I9540, Technische Universität
München, 1995

[9] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Pat-
terns. Elements of Reusable Object-Oriented Software. Add-
ison-Wesley, CA, 1995

[10] R. Grosu, C. Klein, B. Rumpe, M. Broy. State Transition
Diagrams, Technical Report TUM-I9630, Technische Uni-
versität München, 1996

[11] C. Hofmann, E. Horn, W. Keller, K. Renzel, M. Schmidt.
The Field of Software Architecture. Technical Report TUM
- I9641, Technische Universität München, 1996

[12] International Telecommunication Union. Message Sequence
Charts. ITU-T Recommendation Z.120. Geneva, 1994

[13] W. Keller, J. Coldewey. Relational Database Access Layers -
A Pattern Language, accepted for Pattern Languages of Pro-
gram Design, Volume III, Addison-Wesley, 1997, to appear

[14] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Loren-
son. Object-Oriented Modeling and Design. Prentice Hall,
1991

[15] B. Schätz, H. Hußmann, M. Broy. Graphical Development
of Consistent System Specifications. In: J. Woodcock, M.-C.
Gaudel, eds.: FME’96: Industrial Benefit and Advances in
Formal Methods. Springer, LNCS 1051, 1996

[16] M. Shaw, D. Garlan. Software Architecture – Perspectives
on an Emerging Discipline, Prentice Hall, 1996

