
 

A CONCEPTUAL MODEL FOR  
REQUIREMENTS ENGINEERING AND MANAGEMENT 

FOR CHANGE-INTENSIVE SOFTWARE 
 

Jewgenij Botaschanjan, Andreas Fleischmann, Markus Pister1 
Technische Universität München, Institut für Informatik 

Lehrstuhl für Software and Systems Engineering 
Boltzmannstr. 3, 85748 München, Germany 

{botascha, fleischa, pister}@in.tum.de  
  

 

                                                
1 This work was sponsored by the EUREKA-ITEA project “EMPRESS” (ITEA 01003) 

Abstract 
In the development of software with evolving require-
ments, activities of requirements-engineering and manage-
ment are present through the whole software development 
process and affect most of the actors involved. This paper 
presents a conceptual model which aims to an efficient 
requirements management by offering a central data 
structure for requirements that integrates requirements, 
design and implementation workflow. This conceptual 
model was developed for change-intensive embedded 
systems, but can be easily adapted to other domains. This 
paper presents the model itself, techniques to adapt this 
model to specific needs, and demonstrates its usage.  

Key Words 
Software Requirements, Software Evolution, Require-
ments Tracing, Software Product Lines  

1 Introduction 
Requirements engineering is a key activity in the develop-
ment of software systems. One of the challenges require-
ments engineering has to pass is the management of a 
specification document. This task becomes especially 
critical when developing change-intensive software 
systems and product lines. The specification document has 
to be readable, yet concise (despite containing a large 
amount of requirements), has to offer the appropriate 
views on the information to all the different stakeholders 
(including designers, testers, project managers, 
customers), and has to be constantly synchronized with the 
other development products (such as design, code, release 
plans). The conceptual model presented in this paper 
especially supports those tasks by offering a central data 
structure, which serves as an interface between the 
involved participants such as requirements engineers, 

designers, release planners and implementers. 

This conceptual model was developed for evolutional 
embedded real-time systems in the context of the 
European EMPRESS project [1]. It consists of a central 
data structure and methods for its usage. This paper 
focuses on the description of the data structure; the 
application of the model is demonstrated along the 
presented examples.  

The core of the central data structure is the part 
concerning the specification, providing the stakeholders 
with structured information about the system to be 
developed. Other elements of the data structure capture 
information about the design, release planning and 
implementation and relate this information to the 
specification. This integration of requirements, design and 
implementation into one model allows us formulating 
comprehensive queries and constraints that especially 
support tasks involving several workflows such as consis-
tency-checks, change-management and tracing. This 
integration serves as a basis for an integrated tool support.  

The next two sections present the data structure as it has 
been developed for change intensive embedded systems 
(section 2), and show how to adapt this model to specific 
domains (section 3). The last section gives a brief 
summary of the results and sketches further research 
plans. 

2 A Central Data Structure for Change-
Intensive Embedded Systems 

The data structure for change-intensive requirements 
engineering is segmented in three parts: a specification 
part, a design interface and an implementation interface. 
The model consists of elements and relationships between 
them which are depicted as UML class diagrams [2].  

418-061 36

melissa




 

2.1 Specification Part 
A specification is to document requirements. Since 
specifications can get rather large (e.g. several thousands 
of requirements) and are used by various stakeholders 
(e.g. customers, testers, designers), a conceptual model for 
requirements has to offer flexible structuring mechanisms, 
providing the involved stakeholders with the right amount 
and abstraction level of information. The specification 
also has to be able to capture a whole product family and 
offer methods to extract single products from this family. 
These tasks are supported by the specification part. Its 
elements are shown in Figure 1. 

Requirement

Context

date
reason
source
sourcetype
channel
...

Status
*
*

**

*

1

1

refines

successor

state: enum

Aspect

name
...

*

*subaspect

id
name
description
rationale
priority
...

*

*

Variation

Variation Type

*

1

*
*

1

0..1

successor

0..1

 
Figure 1: Specification Part of the Model 

The following subsections explain these elements and 
their functions in detail.  

2.1.1 Capturing Requirements 
In the centre of the specification part stands the element 
"Requirement", storing all relevant information about a 
single requirement. The details about what contents and 
attributes of an individual requirement have to be stored 
(e.g. identifier, name, description, rationale, priority and 
so on) are not determined, so the user can use established 
templates such as [3]. 

A requirement's "Status" denotes the state of a 
requirement, that is, whether it is proposed, rejected, 
approved or deleted. The state space can be adapted, in 
that new states can be added such as "waiting room" or "in 
work" [4]. 

Each instance of a requirement is linked to a "Context" 
which describes the circumstances of its creation, change 
or deletion. A context contains for example information 
about the person ("source") who suggested a change, his 
role ("sourcetype"), such as "customer" or "management", 
the date, the reasons, and the channel (e.g. "interview", 
"contract", "phone call").  

Contexts are a mechanism to realize Pre-Requirements 
Specification Traceability as demanded by [5]. With 
contexts it is possible to query the specification like 
"Show all requirements that origin from Mr. Smith", 
"Show all requirements that were added by the workshop 
at December 2003" or "Show the changes of the last three 
weeks". Since contexts are linked to each other by a 
"successor" association, they form a qualitative timeline 
for the whole specification. In combination with an 
elementary configuration management (which is not 
covered in this paper, for details see [6]), contexts allow 
to comprehend the evolution of requirements and revoking 
changes.  

2.1.2 Structuring Requirements 
The conceptual model provides two mechanisms to 
structure the specification: firstly, a refinement hierarchy, 
and secondly, aspect hierarchies.  

The "refinement" association between requirements 
structures the specification by connecting requirements 
that state the same functionality on different levels of 
detail [7]. For example, a high-level requirement "the 
temperature shall be displayed" can be refined to more 
precise requirements that specify whether the temperature 
shall be displayed in Fahrenheit or Celsius and so on (see 
Example 1). The resulting structure of the refinement is an 
acyclic directed graph, whose nodes are requirements. 

TemperatureDisplay: Requirement

„... the temperature shall be displayed ...“

TempUnit: Requirement

„... the temperature shall be 
displayed as Celsius degreee ...“

TempScale: Requirement

„... the temperature shall be
displayed as an integer number ...“

refines

 
Example 1: Refinement 

The refinement hierarchy offers a special view on the 
specification document. However a specification serves 
for several purposes and thus different structuring 
hierarchies are required. The concept of "Aspect" allows 
establishing these hierarchies along several viewpoints. 
Such viewpoints might be functional units, physical units, 
or non-functional requirements. Thus, an aspect is a set of 
requirements. A requirement can belong to several 
aspects, and aspects can form hierarchies by the "sub-
aspect" association between them.  

In order to improve the manageability of the document, 
correlations between requirements have to be captured 

37



 

explicitly. These can be realized as particular associations 
between requirements [8]. However the effort to maintain 
such associations is high. Aspect hierarchies are an 
alternative concept for modeling of these correlations. An 
aspect aggregates all requirements involved in a particular 
relationship; this is not as precise as individual relations 
between single requirements, but it is easier to overview 
and manage. 

The aspect hierarchies are domain specific and are 
customized for a particular application. For the domain of 
embedded real-time systems, an aspect hierarchy 
framework has been proposed in [6]. Example 2 shows 
some exemplary aspect hierarchies of it. 

 

Example 2: Part of the Aspect Hierarchy for an Instument Cluster 

Aspects are a powerful concept to structure and query a 
specification. Aspect hierarchies allow queries that merge 
or intersect different aspects. Hence, queries can be 
performed such as "Show all requirements that define the 
allocation of the hardware resource “Digital Display” by 
the “Revmeter” service ".  

2.1.3 Product Line Support 
The conceptual model is able to capture product lines. 
Therefore, the elements "Variation" and "Variation Type" 
are introduced (left part of Figure 1).  

Variations are special requirements (indicated by the 
inheritance between "Variation" and "Requirement") that 
are allowed to contradict each other in regard to a 
variation type. Example 3 demonstrates their usage.  

Since a variation type inherits from aspects, it aggregates 
requirements; in Example 3, the variation type 
"TermperatureDisplay" aggregates all requirements 
regarding the temperature display. Also, a variation type 
contains two or more variations ("Fahrenheit" and 
"Celsius" in Example 3). A variation aggregates those 
requirements that have to be considered if the variation is 
chosen. Hence, the sets of requirements of different 
variations need not to be distinct.  

 
Example 3: Variations and Variation Types 

2.2 Design Interface 
This interface serves traceability and tracking purposes for 
the design. It makes it possible to check whether all 
requirements have been considered in the design, and 
supports estimating the impact of a change in the specifi-
cation on the design. Figure 2 shows the elements of the 
conceptual model that are involved in this interface.  

<<abstract>>
Design Artefact

fu
lfi

ls

pl
an

ne
d

ne
ed

ed

* * *

***

Configuration

*

*

\fulfils

*

*

Requirement Variation*

* *
 

Figure 2: Design Interface of the Conceptual Model 

The conceptual model offers an abstract element "Design 
Artefact" that must be adapted to the used design 
paradigm, for example to components and interfaces (see 
Figure 3, and Example 7). 

Component Interface

<<abstract>>
Design Artefact

needs
offers

 
Figure 3: A possible Adaptation of "Design Artefact" 

Then the designer distributes the requirements to the 
design artefacts, using the following associations: "fulfils" 
denotes which requirements are generally fulfilled by a 
design artefact. Those requirements can be either 
"planned" in the design artefact itself or delegated to other 
design artefacts, thus be "needed".  

Example 4 shows an example for those associations, using 
the adaptation of "Design Artefact" as introduced in 
Figure 3.  

Services 

Hardware Resources 

Revmeter 

Speedometer 

Analog Revmeter 

Analog Speedom. 

Digital Display 

TemperatureDisplay : Variation Type 

Fahrenheit: Variation Celsius: Variation 

RangeCelsius :  Requirement 

DisplayIntervall :  Requirement 
DisplayColor :  Requirement 

RangeFahrenh :  Requirement 

38



 

Log: Component

Log: Interface
R1: Requirement

fulfils
needed

fulfils
planned  

Example 4: "fulfils", "needed" and "planned" 

This connection between requirements and design 
supports the formulation of constraints to assure, for 
example, that all requirements are considered in the design 
(see the example in 2.4). It also allows a tracing from 
requirements to design elements, and vice versa.  

Since the design elements can be adapted to the used 
design model, it is possible to connect this design inter-
face with a design modelling tool such as Rational Rose or 
AutoFocus (for actual work on this, see section 4). 

With the help of variations and variation types, a whole 
product family can be described within one instance of the 
conceptual model. In order to describe one particular 
product of this family, for all variation types at most one 
variation can be chosen. Such a decision is captured in the 
element "Configuration". Thus, a configuration represents 
one product of a product family. It consists of a set of 
variations and a collection of design elements to be 
implemented. The "fulfils" set of a configuration consist 
of the requirements of the "fulfils" sets of the aggregated 
design artefacts including the chosen variations. 

Since the design interface establishes a connection 
between the specification and the design, it supports the 
estimation of the impact of a change in the requirements 
by pinpointing the affected design artefacts. This support 
is enhanced by the tracing to the implementation, as 
described in the following section. 

2.3 Implementation Interface 
The implementation interface allows tracing the require-
ments to the implementation, monitoring their implemen-
tation state, checking the consistency between the design 
and its implementation and supports the estimation of the 
impact of a change in the requirements. It builds on the 
element "Design Artefact" and adds realization states and 
release planning to the model. Figure 4 shows the 
elements involved in this interface. 

For the release planning of an iterative implementation of 
the specified product, the conceptual model provides an 
element "Release". Each release relates to a single design 
artefact (for example, a class, an interface, or a 
component) of which it implements a subset, denoted with 
an aggregation "implements".  

<<abstract>>
Design Artefact

ReleaseRequirement
successor0..1

0..1

0..1

1

implements subset

realized

*

*

Configuration

successor0..1

0..1

*
*

Configuration Release

1

0..1

implements subset

*
*

*

*

implements

implements

 
Figure 4: Implementation Interface of the Conceptual Model 

A release plan is a sequence of releases, connected by the 
"successor" relationship. The current release, which is in 
progress, is indicated by the link "implements subset" to 
the design artefact. Example 5 shows an example for a 
release plan of a component, in which LogR2 is the 
current release. 

Log: Component

LogR1: Release LogR2: Release LogR3: Release

implements subset

successor successor  
Example 5: A Release Plan 

In Figure 4, there is also a new relationship between 
requirements and design artefacts introduced: "realized". 
In contrast to the relationships “implements”, which serve 
for planning, the “realized” association is used to track the 
implementation status. As soon as a requirement has been 
implemented for a design artefact, it's moved from its 
"planned" set (see section 2.2) to its "realized" set. Note 
that the realization state of a requirement is not captured 
in its "Status" because a requirement might be involved in 
several design artefacts, thus having several realization 
states.  

While a "Release" represents one release of a single 
design artefact, a "Configuration Release" represents a 
release of one product of the product family. The 
associations of the configuration release are analogous to 
that of the release.  

The connection from requirements to the implementation 
enhances the support of the estimation of change impact 
described in the previous section: when a set of require-
ments is to be changed, the links pinpoint the affected 
design elements, and the release plan states whether actual 
implementation or only release plans have to be changed.  

Since each design artefact declares which requirements it 
fulfils (by the "fulfils" association) and since each release 
defines a set of requirements it implements (by the 
"implements" association), those two sets can be used to 
reveal inconsistencies of the release planning as well as of 
the design. For example, queries can be answered such as 

39



 

"Are there requirements that have not been assigned to a 
release or to a design artefact?", "Does a design artefact 
declare to fulfil requirements, which its releases don't 
declare to implement?", or "Does a release declare to 
implement requirements, which don't belong to its design 
artefact?" As another example, the data structure can also 
help to reveal inconsistencies when a design artefact 
delegates parts of its requirements to other design 
artefacts, and somewhere in this delegation process a 
requirement gets lost. The next section, 2.4, shows an 
example of such an interaction between the three parts of 
the conceptual model.  

2.4 Interaction of the Three Parts 
This subsection presents a small example to demonstrate 
the interaction of the three parts of the conceptual model 
and to show how it supports the cooperation of the 
involved stakeholders: both by monitoring consistency 
constraints of the model, and by structuring the 
communication paths between requirements engineers, 
designers, release planners, and implementers. 

Consider a change in the design (e.g. moving a require-
ment from one design artefact to another). When the 
designer moves a requirement from one design artefact to 
another (that is, by moving the associations "fulfils", 
"needed", and "planned"), the requirement is still linked to 
a release of its old component. This situation results in 
temporary inconsistencies, which are shown in Example 6. 

D1-R2: Release

D1-R3: Release

D1: Design Artefact

D2-R1: Release

D2-R2: Release

D2-R3: Release

successor

successor

successor

successor

X: Requirement

D2: Design Artefact planned

fulfils

D1-R1: Release

im
ple m

ents
su bset

add

im
p lem

en
ts

sub
set

 

Example 6: Temporary Inconsistencies in the Middle of a Design 
Change 

Example 6 shows the situation after a requirement X has 
been moved from one design artefact (D1) to another 
(D2). The current releases are D2-R2 and D1-R2. Since X 
has been added to D1-R1, it has already been imple-
mented in the design artefact D1. Since it has been newly 
moved to D2, it hasn't been implemented yet; thus, it's in 
the "planned" set of that design artefact. And because the 
release planning hasn't been updated yet, the model 
signals two temporary inconsistencies:  

• "According to the release plan, X is implemented 
for D1, but D1 doesn't claim to fulfil X."  

• "D2 claims to plan X, but X isn't added to any of 
its releases." 

Consequently, the requirement has to be explicitly re-
moved from the old release (thus signalising the affected 
implementers that parts of the code might get abandoned 
if the requirement has already be implemented) and added 
to the other component's release-plan (thus signalising the 
affected implementers that new code might have to be 
written). 

3 Adaptation of the Model to Specific 
Needs  

The data structure presented in the previous section comes 
along with a set of refinement methods for adapting the 
model to specific needs, for example, to a specific do-
main, to a certain design paradigm or to a particular tool.  

One refinement method is "specialization", which means 
that elements of the structure can be extended (likewise 
the mechanism of inheritance) to map a more specific 
view on the application area to the data structure. The 
other method is "tailoring", which is used to cut off 
elements or relations from the data structure. The 
following subsections present two examples of how the 
data structure can be adapted to specific needs. 

3.1 Adaptation to a Design Paradigm 
In order to ease and eventually automate the synchroni-
sation of the design and its representation within the 
conceptual model, it is required to adapt the design 
interface to the applied design paradigm. Therefore the 
design interface consists of an abstract element "Design 
Artefact" which must be refined to match the used design 
paradigm. With this, a seamless integration of the 
conceptual requirements model and a design modelling 
tool is possible. If the design is modelled using UML, an 
excerpt of the adaptation could look like Example 7. The 
granularity of the representation of the design paradigm in 
the conceptual model should be chosen in respect to the 
manageability of links.  

 

Example 7: An Adaptation to the UML Design Paradigm  

Beside the synchronisation between the conceptual model 
and a design tool, this adaptation makes it also possible to 
formulate and check consistency constraints between 
design artefacts. In Example 7, a constraint between 

<<abstract>> 
Design Artefact 

Component Class Association 

40



 

classes and interfaces could be "A class fulfils all require-
ments expressed by the specification its interface." 

3.2 Adapting the Requirements Structure 
In section 2.1.2, two general structuring mechanisms had 
been introduced: refinement and aspect hierarchies. There 
exists a variety of more specific approaches [4, 10]. For 
example, a specification can be written top-down, deriving 
user requirements and system requirements from high-
level business requirements [4]. The conceptual model can 
be adapted to this top-down practise. The different levels 
of details can be modelled in the data structure using the 
"refinement" association described in section 2.1.2. 
Furthermore, the model can be adapted by introducing 
new types of requirements as shown in Example 8. 

Requirement

User-
Requirement

Business-
Requirement

System-
Requirement* * * *  

Example 8: Introducing Levels of Details for Requirements 

With this adaptation, more precise consistency constraints 
can be formulated such as "Are there user requirements, 
which have not been passed on to system requirements?" 
or "Are there system requirements that don't relate to a 
business goal?" 

4 Conclusion and Future Work 
The developed conceptual model uses a common data 
structure to integrate the requirements workflow with the 
design and implementation workflows. The data structure 
can be adapted to fit with specific tools, paradigms, and 
domains; for example it can be combined with the Volere 
Requirements Template [3], and AutoFocus design tool 
[11]. This integration enhances the dataflow between the 
workflows, allows pre- and post-tracing within a 
specification and from requirements to design/code and 
permits the formulation and automation of consistency 
checks. The notion of Aspects is used as an easy 
manageable mechanism to model relationships between 
requirements and as a powerful concept to structure and 
query specifications. Aspect and refinement hierarchies 
need some effort to apply, which can be decreased by 
providing aspect hierarchy frameworks (for example [6] 
for the domain of embedded systems), and which pay off 
with change-intensive systems. 

Handling a noteworthy amount of requirements needs tool 
support. Therefore, a prototypical tool called ESTA is 
under development, using Java and mySQL. It should 
support the use of the conceptual model and connect it 
with the design modelling tool AutoFOCUS [11, 12].  

Right now, the usage and the efficiency of the conceptual 

model is tested in the context of the EMPRESS project 
within a case-study of DaimlerChrysler. The results of this 
study, as well as the complete documentation of the 
conceptual model will presumably be published in the 
context of the EMPRESS project in the first term of 2004 
as part of an overall development process for evolutional 
embedded real-time systems [1, 6].  

References 
[1] EMPRESS Homepage, http://www.empress-itea.org 

[2] M. Fowler, UML Distilled. A Brief Guide to the 
Standard Modelling Language (München, Germany: 
Addison-Wesley, 1999) 

[3] J. Robertson, S. Robertson, Volere Requirements 
Specification Template, Edition 9, 2003 
www.volere.co.uk 

[4] K. E. Wiegers, Software requirements (Redmond, 
WA: Microsoft Press, 2003) 

[5] O. Gotel, A. Finkelstein, An Analysis of the Require-
ments Tracing Problem, Proc. International Conference 
on Requirements Engineering 1994, IEEE CS Press, 
1994, 94-101 

[6] J. Botaschanjan, A. Fleischmann, M. Pister, Inte-
gration of Classifications, Structuring and Process 
Models, Framework to Requirements (Chapter 5), 
EMPRESS Compositum, to be published in 2004 

[7] A. Gabb, The Requirements Spectrum, Proc. First 
Regional Symposium of the Systems Engineering Society 
of Australia 1998 (SE98), Canberra/Australia 1998, 
http://www1.tpgi.com.au/users/agabb/Files/Spectrum-
SE98.zip 

[8] P. Leitelier, A Framework for Requirements Trace-
ability in UML-based Projects, 1st International 
Workshop on Traceability in Emerging Forms of  
Software Engineering, In conjunction with the 17th IEEE 
International Conference on Automated Software 
Engineering, U.K., 2002 

[9] ISO/IEC 9126-1:2001(E), Software Engineering – 
Product Quality – Part 1, 2001 

[10] I. Summerville, Software Engineering, (Boston, MA: 
Addison-Wesley, 6th edition, 2000) 

[11] F. Huber, B. Schätz, K. Spiess, AutoFocus - Ein 
Werkzeugkonzept zur Beschreibung verteilter Systeme,  
Arbeitsberichte des Instituts für mathematische Ma-
schinen und Datenverarbeitung, Vol. 29, Nr. 9., 
University Nürnberg, 1996, pages 165-174 

[12] F. Huber, J. Philipps, O. Slotosch, Model-based 
Development of Embedded Systems, Proc. Embedded 
Intelligence, Nürnberg, 2002 

41


