
Did We Test Our Changes?
Assessing Alignment between Tests and

Development in Practice
Sebastian Eder, Benedikt Hauptmann,

Maximilian Junker
Technische Universität München, Germany

Elmar Juergens
CQSE GmbH,

Germany

Rudolf Vaas, Karl-Heinz Prommer
Munich Re Group,

Germany

Abstract—Testing and development are increasingly performed
by different organizations, often in different countries and time
zones. Since their distance complicates communication, close
alignment between development and testing becomes increasingly
challenging. Unfortunately, poor alignment between the two
threatens to decrease test effectiveness or increases costs.

In this paper, we propose a conceptually simple approach to
assess test alignment by uncovering methods that were changed
but never executed during testing. The paper’s contribution is a
large industrial case study that analyzes development changes,
test service activity and field faults of an industrial business
information system over 14 months. It demonstrates that the
approach is suitable to produce meaningful data and supports
test alignment in practice.

Index Terms—Software testing, software maintenance, dy-
namic analysis, untested code

I. INTRODUCTION

A substantial part of the total life cycle costs of long-
lived software systems is spent on testing. In the domain
of business-information systems, it is not uncommon that
successful software systems are maintained for two or even
three decades. For such systems, a substantial part of their
total lifecycle costs is spent on testing to make sure that new
functionality works as specified, and—equally important—that
existing functionality has not been impaired.

During maintenance of these systems, test case selection is
crucial. Ideally, each test cycle should validate all implemented
functionality. In practice, however, available resources limit
each test cycle to a subset of all available test cases. Since se-
lection of test cases for a test cycle determines which bugs are
found, this selection process is central for test effectiveness.

A common strategy is to select test cases based on the
changes that were made since the last test cycle. The underly-
ing assumption is that functionality that was added or changed
recently is more likely to contain bugs than functionality that
has passed several test cycles unchanged. Empirical studies
support this assumption [1], [2], [3], [4].

If development and testing efforts are not aligned well,
testing might focus on code areas that did not change,

This work was partially funded by the German Federal Ministry of Educa-
tion and Research (BMBF), grant “EvoCon, 01IS12034A”. The responsibility
for this article lies with the authors.

or—more critically—substantial code changes might remain
untested. Test alignment depends on communication between
testing and development. However, they are often performed
by different teams, often located in different countries and
time-zones. This distance complicates communication and
thus challenges test alignment. But how can we assess test
alignment and expose areas where it needs to be improved?
Problem: We lack approaches to determine alignment be-
tween development and testing in practice.
Proposed Solution: In this paper, we propose to assess
test alignment by measuring the amount of code that was
changed but not tested. We propose to use method-level
change coverage information to support testers in assessing
test alignment and improving test case selection.

Our intuition is that changed, but untested methods are more
likely to contain bugs than either unchanged methods or tested
ones. However, our intuition might be dead wrong: method-
level churn could be a bad indicator for bugs, since methods
can contain bugs although they have not changed in ages.
Contribution: This paper presents an industrial case study
that explores the meaningfulness and helpfulness of method-
level change coverage information. The case study was per-
formed on a business information system owned by Munich
Re. System development and testing were performed by dif-
ferent organizations in Germany and India. The case study
analyzed all development changes, testing activity, and all field
bugs, for a period of 14 months. It demonstrates that field bugs
are substantially more likely to occur in methods that were
changed but not tested.

II. RELATED WORK

The proposed approach is related to the fields of defect
prediction, selective regression testing, test case prioritization,
and test coverage metrics. The most important difference to the
named topics is the simplicity of the proposed approach and
the fact that change coverage assesses the executed subsets of
test suites, but does not give hints to improve them.
Defect prediction is related to our approach, because we iden-
tify code regions that were changed, but remained untested,
with the expectation that there are more field bugs.



There are several models for defect prediction [5]. In
contrast to these models, we measure only changes in the
system and the coverage by tests and do not predict bugs, but
assess test suites and use the probability of bugs in changed,
but untested code as validation of the approach.

The proposed approach is related to [6], which uses series
of changes “change bursts” to predict bugs. The good results
that were achieved by using change data for defect prediction
encourage us to combine similar data with testing efforts.
Selective regression testing techniques target the selection
of test cases from changes in source code and coverage
information. [7], [8], [9].

In contrast to these approaches, the paper at hand focuses
on the assessment of already executed test suites, because
often experts decide which tests to execute to cover most of
the changes made to a software system [10]. However, their
estimations contain uncertainties and therefore possibly miss
some changes. Our approach aims at identifying the resulting
uncovered code regions. Therefore, our approach can only be
used if testing activities were already performed.

Compared to [11], we are validating our approach by
measuring field defects, and do not take defects into account
that were found during development.
Test coverage metrics give an overview of what is covered by
tests. Much research has been performed in these topics [12]
and there is a plethora of tools [13] and a number of metrics
available, such as statement, branch, or path coverage [14]. In
contrast to these metrics, we focus on the more coarse grained
method coverage. Furthermore, we do not only consider static
properties of the system under test, but changes.
Empirical studies on related topics focus to the best of our
knowledge mainly on the effectiveness of test case selection
and prioritization techniques [9], [15]. In our study, we assess
test suites by their ability to cover changes of a software
system, but do not consider sub sets of test suites.

III. CONTEXT AND TERMS

In this work, we focus on system testing according to the
definition of IEEE Std 610.12-1990 [16] to denote “testing
conducted on a complete, integrated system to evaluate the
system’s compliance with its specified requirements”. System
tests are often used to detect bugs in existing functionality
after the system has been changed. In our context, many tests
are executed manually and denoted in natural language.

Our study uses methods as they are known from program-
ming languages such as Java or C#. Methods form the entities
of our study and can be regarded as units of functionality of a
software system. They are defined by a signature and a body.
To compare different releases of a software system over time,
we create method genealogies which represent the evolution of
a single method over time. A genealogy connects all releases
of a method in chronological order [17].

In the context of our work, the life cycle of a software
system consists of two alternating phases (see Figure 1). In
the development phase, existing functionality is maintained

Method Genealogy 1
Method Genealogy 2
Method Genealogy 3

It
er

at
io

n
1

It
er

at
io

n
2

Te
st

R
un

1

Te
st

R
un

2

R
el

ea
se

H
ot

fix

H
ot

fix

C
C T

C

C
T F

F

Development Phase Productive Phase

Legend

C Change

T Test

F Fix
Genealogy is
changed-untested

Fig. 1. Development life-cycle

or new features are developed. Development usually occurs
in iterations which are followed by test runs which are the
execution of a selection of tests aiming to test regressions
as well as the changed or added code. A development phase
is completed by a release which transfers the system into
the productive phase. In the productive phase, functionality
is usually neither added nor changed. If critical malfunctions
are detected, hot fixes are deployed in the productive phase.

We consider a method as tested if it has been executed
during a test run. If a method has been changed or added
and been tested afterwards before the system is released we
consider it as changed-tested. If a method change or addition
has not been tested before the system is transferred in the
productive phase, we consider the method as changed-untested
(see genealogy 1 and 3 in Figure 1).

IV. CHANGE COVERAGE

To quantify the amount of changes covered by tests, we
introduce the metric change coverage (CC). It is computed by
the following formula and ranges between [0,1].

change coverage =
#methods changed-tested

#methods changed

A change coverage of 1 (CC = 1) means that all methods
which have been changed since the last test run have been
tested after their last change. On the contrary, a coverage of
0 (CC = 0) indicates that none of the changed methods have
been covered by a test.

V. CASE STUDY

A. Goal and Research Questions

The goal of the study is to show whether change coverage is
a useful metric for assessing the alignment between tests and
development. We formulate the following research questions.
RQ 1: How much code is changed, but untested? The goal
of this research question is to investigate the existence of
changed, but untested code, to justify the problem statement of
this work. Therefore, we quantify changed and untested code.
RQ 2: Are changed-untested methods more likely to contain
field bugs than unchanged or tested methods? The goal of
this research question is to decide whether change coverage
can be used as a predictor for bugs in large code regions and is



therefore useful for maintainers and testers to identify relevant
gaps in their test coverage.

B. Study Object

We perform the study on a business information system at
Munich Re. The analyzed system was written in C# and its
size are 340 kLOC. In total, we analyzed the system for 14
months. The system has been successfully in use for nine years
and is still actively used and maintained. Therefore, there is
a well implemented bug tracking and testing strategy. This
allows us to gain precise data about which parts of the system
were changed and why they were changed.

We analyzed two consecutive releases of the system. Re-
lease 1 was developed in five iterations in two months, and
release 2 was developed in ten iterations in four months.
Both releases were deployed to the productive environment
due to hot fixes five times and were in productive use for
six months. Note that one deployment may concern several
bugs and changes in the system. The system contained 22123
(release 1) respectively 22712 (release 2) methods.

For both releases, test suites containing 65 system test cases
covering the main functionality were executed three times.

C. Study Design and Execution

For all research questions, we classify methods according to
the categories shown in Figure 2: Tested or untested, changed
or unchanged, and whether methods contain field bugs.

untested

tested changed

methods with bugs

changed-untested
methods with bugs

Fig. 2. Method categories used to evaluate change coverage

Study Design: First, we collect coverage and program data,
then we answer RQ 1 and RQ 2 based on the collected data.

For answering RQ 1, we build method genealogies and
identify changes during the development phase and relate
usage data to these genealogies. With this information, we
identify method genealogies that are changed-untested.

For answering RQ 2, we calculate the probability of field
defects for every category of methods by detecting changes
in the productive phase of the system in retrospective. This
is valid for the analyzed system, since only severe bugs are
fixed directly in the productive environment, which is defined
by the company’s processes.

We gain our results by identifying methods that are changed
in the productive phase, which means they were related to
a bug. We then categorize methods by change and coverage
during the development phase. Based on this, we calculate the
bug probability in the different groups of methods.
Study Execution: We used tool support, which consists of
three parts: An ephemeral [18] profiler that records which
methods were called within a certain time interval, a database
that stores information about the system under consideration,

overall untested changed
changed-tested

changed-untested
0%

0.2%

0.4%

0.1%

0.24%

0.45%
0.34%

0.53%

0.04% 0.09%
0.2% 0.19% 0.21%

B
ug

pr
ob

ab
ili

ty
pe

r
m

et
ho

d

Release 1 Release 2

Fig. 3. Probability of fixes in both releases

and a query interface that allows retrieving coverage, change,
and change coverage information. The same tool support was
used in earlier studies [17], [19].
Validity Procedures: We focus on validity procedures and not
on threats to validity due to space limitations.

We conducted manual inspections to ensure that every bug
that is identified by our tool support is indeed a bug.

To confirm the correctness of method genealogies we build
based on locality and signatures, we conducted manual inspec-
tions of randomly chosen method genealogies. We found no
false genealogies and have therefore a high confidence in the
correctness of our technique. We also used the algorithm in
our former work [17], which provided suitable results as well.

D. Results

RQ 1: Untested methods account for 34% in both releases
we analyzed. 15% of all methods were changed during the
development phase of the system, also in both releases. The
equality of the numbers for both releases is a coincidence.

8% respectively 9% of all methods were changed-untested.
Considering only changed methods, only 44% were tested in
release 1 and 45% of these methods were tested in release
2. These numbers constitute that there are gaps in the test
coverage of changed code in the analyzed system.
RQ 2: We found 23 fixes in release 1 and 10 fixes in
release 2. The distribution of the bugs over the different change
and coverage categories of methods is shown in Table I.
The biggest part of bugs occurred in methods categorized as
changed-untested with 43% of all bugs in release 1 and 40%
of all bugs in release 2. In both releases, there are considerably
less bugs in unchanged regions than in changed regions.

The probabilities of bugs are shown in Figure 3. With 0.53%
in release 1 and 0.21% in release 2, the probability of bugs
is higher in the group of methods that were changed-untested.
This confirms that tested code or code that was not changed in
the development phase is less likely to contain field defects.

E. Discussion

RQ 1: With 15% of all methods being changed and 34% of
all methods being not tested, untested code and changed code
plays a considerable role in the analyzed system. The high
amount of changed methods results from newly developed
features, which means that many methods were added during
the development phase of both releases.



TABLE I
DISTRIBUTION OF FIXES OVER THE DIFFERENT CATEGORIES

Release 1 Release 2

Category Absolute Relative Absolute Relative

changed-tested 5 22% 3 30%
changed-untested 10 43% 4 40%
unchanged-tested 0 0% 0 0%
unchanged-untested 8 35% 3 30%

43% respectively 40% of the changed methods were not
tested in the analyzed system. These high numbers also result
from features that are newly developed during the development
phase. For these new features, there was only a very limited
number of test cases.
RQ 2: With a probability of bugs in untested-changed methods
of 0.53% respectively 0.21%, this group of methods contains
most of the bugs. This means that the system itself contains
few bugs at the current stage of development and bugs are
brought into the system by changes.

Furthermore, the probability of bugs in untested code is,
in both releases, less than half of the probability in changed-
untested code. Hence, we conclude that only considering test
coverage is not as efficient as considering change coverage.

The probability of bugs in changed code regions is also con-
siderably higher than in untested regions. But the combination
of both metrics, test coverage and changed methods points to
code regions that are more likely to contain bugs than others.
Is Change Coverage Helpful in Practice? We employed
the proposed approach also in the context of Munich Re in
currently running development phases. We showed the results
to developers and testers by presenting code units, like types or
assemblies ordered by change coverage. During the discussion
of the results, we conducted open interviews with developers to
gain knowledge about how helpful information about change
coverage is during maintenance and testing.

Developers identified meaningful methods in changed but
untested regions by using the static call graph to find methods
they know. With these methods, the developers were able
to identify features that remained untested. For example the
processing of excel sheets in a particular calculation was
changed, but remained untested afterwards. In this case, among
some others, the (re-)execution of particular test cases and
the creation of new test cases were issued. This increased
the change coverage considerably for the code regions where
the features are located. This shows that change coverage is
helpful for practitioners.

VI. CONCLUSION AND FUTURE WORK

We presented an automated approach to assess the alignment
of test suites and changes in a simple and understandable
way. Instead of using rather complex mechanisms to derive
code units that may be subject to changes, we are focusing
on changed but untested methods and calculate an expressive
metric from these methods. The results show that the use of

change coverage is suitable for the assessment of the alignment
of testing and development activities.

We also showed that change coverage is suitable for guiding
testers during the testing process. With information about
change coverage, testing efforts can be assessed and redirected
if necessary, because the probability of bugs is increased in
changed-untested methods. Furthermore, we presented our tool
support that allows us to utilize our technique in practice.

However, the number of bugs we found is too small to
derive generalizable results. Therefore, we plan to extend our
studies to other systems to increase external validity. But the
first results that we presented in this work point out that the
consideration of code regions that are modified, but not very
well tested is important. This motivates future work on the
topic and the inference of improvement goals.

One challenge is the identification of suitable test cases from
code regions to give hints to testers and developers which test
case to execute to cover more changed, but untested methods.
Therefore, we plan to evaluate techniques related to trace link
recovery to bridge the gap to test cases.

REFERENCES

[1] N. Nagappan and T. Ball, “Use of relative code churn measures to predict
system defect density,” in ICSE, 2005.

[2] N. Nagappan, B. Murphy, and V. Basili, “The influence of organizational
structure on software quality,” in ICSE, 2008.

[3] T. Graves, A. Karr, J. Marron, and H. Siy, “Predicting fault incidence
using software change history,” IEEE Trans. Softw. Eng., vol. 26, no. 7,
2000.

[4] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Where the bugs are,” in
ISSTA, 2004.

[5] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A systematic
literature review on fault prediction performance in software engineer-
ing,” IEEE Trans. Softw. Eng., vol. 38, no. 6, 2012.

[6] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B. Murphy,
“Change bursts as defect predictors,” in ISSRE, 2010.

[7] V. Channakeshava, V. K. Shanbhag, A. Panigrahi, R. Sisodia, and
S. Lakshmanan, “Safe subset-regression test selection for managed
code,” in ISEC, 2008.

[8] Y.-F. Chen, D. Rosenblum, and K.-P. Vo, “Testtube: a system for
selective regression testing,” in ICSE, 1994.

[9] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel,
“An empirical study of regression test selection techniques,” in ICSE,
1998.

[10] M. Harrold and A. Orso, “Retesting software during development and
maintenance,” in FoSM, 2008.

[11] A. Srivastava and J. Thiagarajan, “Effectively prioritizing tests in devel-
opment environment,” in ISSTA, 2002.

[12] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage
and adequacy,” ACM Comput. Surv., vol. 29, no. 4, 1997.

[13] Q. Yang, J. J. Li, and D. Weiss, “A survey of coverage based testing
tools,” in AST, 2006.

[14] Y. Malaiya, M. Li, J. Bieman, and R. Karcich, “Software reliability
growth with test coverage,” IEEE Trans. Rel., vol. 51, no. 4, 2002.

[15] G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Prioritizing test cases
for regression testing,” IEEE Trans. Softw. Eng., vol. 27, no. 10, 2001.

[16] IEEE, “IEEE Standard Glossary of Software Engineering Terminology,”
New York, USA, 1990.

[17] S. Eder, M. Junker, E. Jurgens, B. Hauptmann, R. Vaas, and K. Prommer,
“How much does unused code matter for maintenance?” in ICSE, 2012.

[18] O. Traub, S. Schechter, and M. D. Smith, “Ephemeral instrumentation
for lightweight program profiling,” School of engineering and Applied
Sciences, Harvard University, Tech. Rep., 2000.

[19] E. Juergens, M. Feilkas, M. Herrmannsdoerfer, F. Deissenboeck, R. Vaas,
and K. Prommer, “Feature profiling for evolving systems,” in ICPC,
2011.


