
Electronic Notes in Theoretical Computer Science 82 No. 6 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume82.html 10 pages

Compositional Generation of MC/DC
Integration Test Suites

Alexander Pretschner 1

Institut für Informatik, Technische Universität München, Germany

Abstract

We present a method for automatically generating tests for reactive systems spec-
ified by concurrently executing extended finite state machines. The generated test
suites satisfy the modified condition/decision coverage criterion at unit and inte-
gration levels. The generation of MC/DC suites for eager first-order functional
programs is subsumed. An industrial chip card case study illustrates the approach.

1 Introduction

The main difficulty in testing is to choose “good” test cases. This is because
the quality of test cases is bound to a particular application. A criterion for
what constitutes a “good” test case serves as test case specification—i.e., the
“property” to be tested—, as a stopping criterion for the testing process, and
as a metrics for assessing the quality of a test suite [8]. In the domain of testing,
coverage criteria enjoy some popularity. While nearly everybody agrees that
they should only be used as a complement to functional, i.e., domain- and
problem-specific testing, they exhibit the utterly useful characteristics of being
domain- and application-independent. Whether or not coverage criteria are
suitable to assess the quality of a test suite is not the subject of this paper.

We present a method for computing test sequences that satisfy a control
flow oriented structural coverage criterion called the modified decision/condition
coverage (MC/DC). MC/DC is recommended as a complement to functional
tests by the DO-178B standard used in the aircraft industry.

Coverage criteria are usually defined on the grounds of units. Examples
for units include functions in C, or methods in Java. Since functions usually
contain some implicit assumptions on their inputs and the current data state,
unit-based test suites may well contain test cases that can never be executed
by the integrated system. Our approach not only generates test suites that

1 Supported by the DFG (Be 1055/7-3); Fax +49 8928917307; Email pretschn@in.tum.de

c©2003 Published by Elsevier Science B. V.

Pretschner

satisfy the criterion on a per-unit basis, but also for arbitrary compositions of
units, including the entire system. This means that the generated test suites
are executable by the system, and they satisfy MC/DC for each unit. We
generate integration test suites on the grounds of previously generated unit
tests.

The language under consideration is that of the CASE tool AutoFocus

[1]. Reactive systems are specified by hierarchic concurrently executing
extended finite state machines (EFSMs), i.e., finite state machines with a local
data space. We only consider deterministic systems. Guards and assignments
of transitions are specified in a simple functional language. Test cases are
generated by means of symbolic execution. The idea is to first generate a test
suite for each transition, i.e., each pair of guard and assignment. This yields
source and destination states for this transition. We monitor which function
definitions have not been entirely covered and try to find additional test cases
for those transitions that access these function definitions.

Using directed search [3], we then try to find a trace of the component (the
EFSM) the transition belongs to. If such a trace cannot be found, because
the computation is too complex or the state is unreachable, then a different
test suite for the transition is generated and the process is iterated. Once test
cases for transitions have been turned into test cases for EFSMs, we try to
turn these into test cases of composed systems. This is, again, achieved by
using directed search.

Clearly, compositional test case generation at the level of coverage criteria
is just one application of the overall scheme. There are no objections to
using it for alternative test case specifications. Furthermore, if incremental
development is understood as adding functionality in form of new components,
then test cases for an earlier increment can be used as a basis for test cases for
later increments. Model-based testing in the context of incremental system
development is discussed in [3].

Test cases are used for both validating the model and verifying the respec-
tive implementation. In the first case, outputs must be checked manually due
to a lack of a formalized specification—the model is the specification (the ex-
istence of a further formalized specification obviously only shifts the problem
but does not solve it). In the second case, the model’s output may serve as
reference output for the implementation. Clearly, this requires bridging the
gap between the different levels of abstraction. This is a difficult problem. In
our case study, however, it turns out to be solvable.

We illustrate the approach by a chip card application, the WAP identity
module (WIM [6]), taken from a recent study [2]. In cellular phones, it is used
for card holder verification, for cryptographic operations such as computing
digital signatures, and for the security related parts of the handshake between
mobile equipment and some server. Concurrent EFSMs were used for func-
tional decomposition of the system. The general ideas, however, are expected
to carry over to actually distributed systems.

2

Pretschner

�������

�	�	
 �	���	���

��� ������������������� �
� � � �	���!�����"���#��� $ �

�����	���!������������	���!�������

%��'&)(��* � �	�	
 %��'&)(��* � �	���

� �	�#+ ��$, ������� �

�-� � � �����!��������� $ �

%��'&)(��* � �	�/. (0���*

%��'&)(��* � �	�/. (0���*
%��'&)(��* � �	�/. (0���*

� �	� + ��$, ��� �

�1� �������!�����"���#����� �

%#�2&)(��* � �	�	
 %��'&)(��* � �	���

%��'&)(��* � �	���

%��2&3(��* � �	�	

�	��* ��%#�2&4��(����* ��%��'&4�'(5�6/7�8

	�:9
� �2;"<2* $ (= .?> ��* ��($ ����&

� �2;2@
� �4A�@

����* ��B���, �2��* C	��* $ DE@

�1� �
�:�2&3(�1� �

� * �

+ $, � � ="&3(���

�!$ &4;)��, , �����'�

%�& > @
F#<)D D ��*

G HJI K�LNM

G ONI K�LNM

G LNI K�LNM

ONI P�Q/R

OSHJI P�Q:R

OTONI P�Q/R

OULVI P�Q/R
LTW)I X4WJOZYVG [\]J^"_TH

OS` I P�Q:R G ` I K�LNM

OZQ�I P�Q:R
G Q�I K�LNM

G aJI K�LNM
G I K"LNMOZaJI P�Q/R

MV_VG I b'c d'X4\ eN\ W MZf)I b'c d'X4\ eN\ W

MZf)I b'c d'X4\ eN\ W

MV_VG I b�c d'X4\ eN\ W

MZf)I b'c d'X4\ eN\ W

LTg3MJI X"WJOUh/MV_JK�WVLNYVi \j

j

Fig. 1. WIM system structure; Security Environments EFSM

2 AutoFocus model of the WIM

In AutoFocus [1], systems are specified by hierarchic networks of concurrently
executing clock-synchronously communicating EFSMs. Communication takes
place over typed channels represented by arrows. Typed local variables can
be assigned to components. Fig. 1, left, shows a system structure diagram
of the WIM. Commands enter the system at the left hand side and are dis-
patched to the functional block that is responsable of taking care of them.
Functional blocks are defined for the file system, for card holder verification
with PINs and PUKs operations, for security environments—data structures
for security-related and transport-level commands—, for security operations—
enciphering, deciphering, computing and verifying digital signatures, comput-
ing cryptographic checksums—, and for miscellaneous other commands such as
generating random numbers. Responses of the functional blocks are merged,
and stored, if necessary.

Each bottom level component is associated with an EFSM. Fig. 1, right,
shows an example for the state machine of component SecurityEnvironment.
It handles the two security environments (storing keys and other cryptographic
parameters), one for transport level security and one for signature related
operations. Control states are depicted as ovals, transitions as arrows.

c?Cmd : not((is_PSOComputeDigSig(Cmd) || is_CardReset(Cmd))) :

pinNRState = pinNRTransition(Cmd,pinNRState) :

r!pinNROutput(Cmd,pinNRState); s!pinNRTransition(Cmd,pinNRState)

Fig. 2. Example Transition

Each transition is defined as a tuple consisting of pattern matching condi-
tion for the input channels, a guard ranging over input and component local
variables, an assignment to local variables once the transition has fired, and
output statements. Fig. 2 shows an example for a transition of a subcompo-
nent of CardholderVerification, namely that taking care of the PIN that
is used for digital signatures etc. The guard constrains nothing but the input;
one local variable (pinNRState is updated by a function pinNRTransition).
pinNRState is of a complex type tCHVState the handling of which turns out
to be coped with more conveniently by referring to an explicit function rather

3

Pretschner

pinNRTransition: tCommand -> tCHVState -> tCHVState;

fun pinNRTransition(verifyCheck(pinNRRef), S) = S

| pinNRTransition(verify(pinNRRef,P), cs(S,Pi,0,Pu,Puc)) =

cs(unver,Pi,0,Pu,Puc)

| pinNRTransition(verify(pinNRRef,P), cs(S,Pi,N,Pu,Puc)) =

(if (P == Pi) then cs(verif,Pi,maxPinCtr,Pu,Puc)

else cs(unver,Pi,N-1,Pu,Puc) fi)

| ...

Fig. 3. Functional definitions (variables start with capitals)

than accessing its components at the level of transitions.

Functions (as well as guards and assignments) are defined in a simple first-
order functional language. A part of the definition of function pinNRTransition

is given in Fig. 3. Roughly, it specifies that (1) the PIN’s state is not changed
if the command just checks the verification status, that its status is (2) set
to “unverified” if the respective retry counter has reached 0, and (3) that (a)
its state is set to “verified” and the retry counter is reset if the correct PIN
was entered or (b) is set to “unverified” by decrementing the retry counter if
a wrong PIN was entered.

Test case generation is then done by translating the system into a Con-
straint Logic Programming (CLP) language and executing this program. The
execution is symbolic since unlike in approaches like explicit-state model check-
ing, we may compute with sets of values that are dynamically created during
execution. For instance, if a guard is specified by i 6= v for input channel i

and some value v, then we do not enumerate all possible instantiations for v

but rather compute with two constraints, i = v and i 6= v. At the end of the
generation procedure, test sequences must hence be instantiated; this can be
done at random or, if types are ordered, w.r.t. limit analysis.

3 Generation of MC/DC test suites

This section starts by defining MC/DC at the level of propositional formu-
lae. It is shown how MC/DC test cases for functional expressions, function
definitions, transitions, atomic EFSMs, and composed EFSMs are generated.

Propositional formulae The idea behind MC/DC is as follows. For each condi-
tion occurring in a program, a test suite is required that ensures that for each
atom in the condition there exist two test cases that yield different results
when independently toggling the atom under consideration. Such test suites
may not always exist; just consider tautologies or conditions with one literal
being directly dependent on another. If an MC/DC test suite exists, then
there are n + 1 test cases for each condition that consists of n literals. We
illustrate this by the formula F = ¬a∨(¬b∧c). The set of possible evaluations
is given by {1 : 000 − 1, 2 : 001 − 1, 3 : 010 − 1, 4 : 011 − 1, 5 : 100 − 0, 6 :
101− 1, 7 : 110 − 0, 8 : 111 − 0} where the running number labels a test case,

4

Pretschner

the triple denotes the values of a, b, and c, respectively, and the value after
the hyphen is the value of F when evaluated.

For this formula, there are two test suites that satisfy MC/DC, namely
the one consisting of test cases (variable assignments) S1 = {1, 5, 6, 8}, and
S2, consisting of {4, 5, 6, 8}. For S1, we have the following: Cases 1 and 5
toggle the value of a by changing the formula’s evaluation; (5, 6) toggle c, and
(6, 8) toggle b. For S2, (4, 8) toggle a instead of (1, 5) in S1. An algorithm for
computing such test suites is straightforward and thus omitted for the sake
of brevity. In the following, πMC/DC denotes the transformation that takes a
propositional formula and picks one set of valuations that satisfy MC/DC.

Functional expressions In order to compute a test suite for a functional expres-
sion—the RHS of a function definition, a guard, or an assignment—we fix one
conditional ite(C ,T ,E). The basic idea is that we wrap this conditional
into another one that enforces a valuation of the atoms in C such that the
requirements for one of the test cases in an MC/DC test suite are fulfilled.

In the following, let ⊥ denote the Boolean value false and > denote true.
In a first step, the atoms A1, . . . , An of C are abstracted into symbolic names,
S1, . . . , Sn, resulting in an abstract condition C ′. For instance,

e = f (X , ite(¬g(X) ∨ Y < 7 , 123 , 456))(1)

becomes f (X , ite(C ′, 123 , 456)) with C ′ = ¬S1 ∨ S2 and the substitution
σ = {S1 7→ g(X), S2 7→ Y < 7}. We then compute an MC/DC suite for
C ′, πMC/DC (C ′) as described above. In this case, there is just one, namely
πMC/DC (e) = {S1 = ⊥∧S2 = ⊥, S1 = >∧S2 = ⊥, S1 = ⊥∧S2 = >}. For test
case generation, we then use the set M = {f(X, ite(σ(m), ite(C, 123, 456), fail)) :
m ∈ πMC/DC (C ′)} where σ(x) denotes the application of substitution σ to x

and fail denotes a special value indicating that the computation did not suc-
ceed. In the following, we will refer to the computation of M for an expression
e by µ′(e). µ′ computes all suites if more than one exists (i.e., a set of sets).
µ(e) picks one random element of µ′(e) (i.e., a set—a set of test cases).

Doing the above independently for each condition in a functional expres-
sion, we get such a set of expressions for each condition. Since we are equipped
with a test case generator that by symbolically executing the expression is able
to find all possible valuations for all variables occurring in an expression like
the above one, we can use it to generate a test suite that contains values for
X and Y such that the resulting test suite satisfies MC/DC.

Function definitions In the functional language of AutoFocus, functions are
defined as follows. Let ~ai denote the tuple ai1, . . . , ain. f of arity n ≥ 1
is defined by m equations f(~a1) = rhs1 , f(~a2) = rhs2 , . . . , f(~am) = rhsm .
Assume that di for 1 ≤ i ≤ m denotes the i − th definition. The intuitive
meaning of pattern matching with the function’s actual parameters is that
the first pattern that matches is used, and the other ones are ignored. This

5

Pretschner

motivates rewriting the definitions into one single function f(~A) = ϕ(d1) via
a function ϕ for 1 ≤ i ≤ m:

ϕ(di) = ite
(

unif (~ai, ~A), (mgu(~ai, ~A))(rhsi), ϕ(di+1)
)

(2)

with ~A = A1, . . . , An being a tuple of fresh variables and ϕ(dm+1) = fail .
At runtime, the Ai are bound to the actual parameters of f . unif (t1, t2)
decides whether or not t1 and t2 are unifiable; λs.mgu(t1, t2)(s) computes the
most general unifier of the two arguments and applies it to term s. 2 Clearly,
this choice is somewhat arbitrary. One may well decide to use the following
definition instead,

ϕ(di) = ite
(

n
∧

j=1

unif (aij, Aj), (mgu(~ai, ~A))(rhsi), ϕ(di+1)
)

,(3)

which is equivalent but obviously does impact the number of necessary
MC/DC test cases. The problem is a result of the definition of unif which
can be seen as an atomic proposition, a conjunction of propositions over all
arguments of the function, or as a conjunction of propositions over all positions
of all arguments. This example is typical for coverage criteria defined on the
grounds of units: If unif is seen as a black box function as in Eq. 2, the
resulting test cases are less numerous than if the definition of Eq. 3 or the
position-wise definition are taken into account.

Applying the above transformation µ to ϕ(d1), we get a set of functions,
µ(ϕ(d1)). By means of symbolic execution, they yield an MC/DC test suite for
the definitions of a function. Functions may well contain implicit assumptions
on their actual parameters; these may not be reflected by the test cases.

Transitions Consider a component with p ≥ 1 input channels, q ≥ 1 variables,
and r ≥ 1 output channels ({p, q, r} ∩ {0} 6= ∅ is handled similarly). Each

transition of the associated EFSM is of the form ~I = ~ι : g : ~V ′ = ~υ : ~O = ~o

with the following intuitive meaning. Provided the current input values, ~I =
I1, . . . , Ip match given values ~ι = ι1, . . . , ιp, it is checked whether or not guard

g, ranging over ~I and the current values of the local variables ~V = V1, . . . , Vq,

holds. If this is the case, then local variables, ~V ′, as well as output channels,
~O = O1, . . . , Or are assigned new values, ~υ and ~o. If the pattern matching
condition or the guard do not hold, then the transition is not enabled. Similar
to the above, we rewrite each transition

t(~I, ~V , ~V ′, ~O) = ite
(

unif (~ι, ~I), (mgu(~ι, ~I))(ite(g, a, st(~I, ~V))), st(~I)
)

,(4)

where assignment a = (~V ′ = ~υ : ~O = ~o) assigns new values to the output
channels and updates the local variables. Guard g and assignment a may
contain arbitrary functional expressions; since a assigns more than one value,
we assume some function that defines sequential composition to be given.

2 Replacing matching by unification is part of the translation for symbolic execution.

6

Pretschner

Function st stores the current values of its arguments and then fails. The
rationale for this is that if pattern matching condition or guard cannot be
satisfied, this situation must be taken care of by another transition that em-
anates from the same control state. For the corresponding values of ~I and
~V , the transition cannot fire. Since the system is supposed to be input en-
abled, we try these values for all other transitions emanating from the same
control state; one will be enabled for the corresponding values. Note that it is
obviously necessary to adjust the translation µ for functional expressions by
replacing fail by st(~I, ~V) when µ(g) and µ(a) are computed.

We use the above definitions to compute test suites that satisfy MC/DC for
each single transition. Source and destination control states for each transition
are known. The resulting test suite constrains the source data state, values at
input channels, and yields constraints for updated local variables and output
channels. Clearly, the set of source states defined by the test suite may be
locally or globally unreachable, i.e., it may be unreachable in the component
under consideration or in the overall system.

Furthermore, in general it is the case that not all function definitions are
covered w.r.t. the required criterion. That is to say, if MC/DC for all transi-
tions is achieved, this does not necessarily mean that all function definitions
are covered w.r.t. MC/DC. We cope with this in a manner similar to what
we did with function st for transitions above: It is monitored which function
definitions have not been executed. For these function definitions, alternative
transitions are then tried in order to enforce their execution.

Single EFSMs Applying the above procedure to all transitions of an EFSM
yields a set of source and destination (control and data) states. We need to
find traces of the corresponding component that eventually lead to them. In
order to do so, one can, up to a given length, enumerate all possible execu-
tion traces of the component and check whether or not the given states are
contained. In principle, this is what happens when entire components are
symbolically executed; efficiency is increased by (a) preventing sets of states
from being visited more than once (in fact, specializations of previously visited
sets of states are excluded) and (b) direct the search. This can be done by
computing distances between the actual state and the state that is sought for,
and heuristically choosing the next transition w.r.t. the minimal distance (of-
ten, it is beneficiary to rely on backwards search). This approach is described
in detail in [3,4]. If a state turns out not to be reachable or the computation
appears to be too costly, then one might try another set of MC/DC test cases
for transitions, or check why this situation occurred.

Communicating EFSMs The traces of single components may well turn out
not to be executable when the system is integrated. Again, the reason is that
components usually contain implicit assumptions on their inputs.

In the simple clock-synchronous setting, one starts by trying whether or

7

Pretschner

not the computed sequences for one component are projections of the behav-
ior of the composed system. In case they are, it is rather simple to compute
sequences of the overall system by means of symbolic execution—the compo-
nent’s test sequence determines much of the system’s behavior which renders
the search space rather small.

In case they are not, we check whether or not each single state of the
component’s test sequence is reachable. That is to say, if the sequence is of
the form [σ1, σ2, . . . , σn], we start by trying to find a sequence of the overall
system such that the respective projection of its last state, Σ1, equals σ1 (in
fact, it is advisable to also allow generalizations and specializations of σ1).
This process is iterated. Starting by Σ1, we try to find a sequence the last
state of which, Σ2, is a specialization or generalization of σ2. This must be
done in a way that the constraints on all elements of the first sequence remain
satisfiable. The process repeats from Σ2, until Σn is found that specializes or
generalizes σn. Clearly, elements of the sequences that lead to Σi may well lead
to states that make it impossible to reach some σi; in this case, backtracking
is needed. Searching is, as in the case of single components, rendered more
efficient by state storage and directed search.

4 Evaluation

The above procedure was applied to the model of the WIM. The system
uses a total of 210 function definitions for which 312 MC/DC test cases
were generated. Tab. 1 shows the results for component-wise and system-
wide test case generation. The second column shows the number of sub-
components for the hierarchical components CardHolderVerification and
SecurityOperations. The third column shows the number of transitions
(arrows in the EFSM) for each component. For the hierarchical ones, the sum
is built over their subcomponents. The fourth column displays the number of
MC/DC test cases that were generated for the components. The respective
test cases are symbolic traces and not mere values. Finally, the fifth column
shows the number of 1-step symbolic executions. That is to say, if the source
state is not determined, the component can perform as many different symbolic
steps as given by the respective number. For the hierarchical components, we
give the sum of the number of executions of their subcomponents (Σ) as well
as the number of steps if the component’s subcomponents are connected one
to the other (Π).

The test cases for components covered almost all function definitions, ex-
cept for those cases that were known not to be applicable (the respective
function definitions had been inserted for the sake of completeness). MC/DC
coverage for the integrated model, including all transitions and function def-
initions, could be achieved by 407 test cases (this number does not take into
account impossible cases that cannot be executed by the system). That this
number is comparable to the number of test cases for the function definitions

8

Pretschner

Component Subc. Transitions MC/DC executions

WimPre – 9 11 33
FileSystem – 12 12 16
CardHolderVerification 6 Σ68 Π28 Σ187, Π2530
SecurityEnvironments 0 19 35 69
SecurityOperations 9 Σ51 Π41 Σ159, Π388
Misc 0 3 3 3
WimPost 0 5 32 6
ResponseBuffer 0 7 13 11

System 21 Σ174 407 Π94, 244

Table 1
MC/DC test cases

comes as no surprise since almost all interesting functionality is encoded in
these functions. There is, however, redundancy in the test cases for we did not
check whether or not one test case subsumes another. Removing redundant
test cases is the subject of future work.

As a comparison, we generated about 60,000 test sequences [2] when not
using MC/DC as test case specification. Out of these, roughly 1,500 were
chosen to test the actual card. These test cases contain repetitions of com-
mands (re-entering wrong PINs) that are not directly reflected by a structural
criterion like MC/DC.

5 Related Work

Various approaches to test case generation on the grounds of explicit state
transition diagrams are discussed and compared in [3]. Our approach differs
in not explicitly building the state space but rather symbolically executing
the system. This alleviates the task of coping with structural criteria since we
do not have to explicitly built the labeled transition system and translate the
coverage criterion accordingly.

[5] use a model checker for computing MC/DC test suites at the level of
units. [7] use genetic algorithms for the generation of structural unit tests.
Reactive systems—more concretely, different states of a unit—are not con-
sidered. In terms of our approach to directed search, the approaches are
somewhat similar. In both cases, integration tests are not taken into account.

6 Conclusion

We have presented a method for generating MC/DC integration test suites
from models specified with communicating EFSMs. The distinct feature of
the approach is that we not only generate test suites for units (functions,
transitions) but also for the entire system. The test suite for the entire system
does, however, satisfy MC/DC at the level of units. Clearly, the compositional

9

Pretschner

approach to test case generation generalizes to test case specifications differ-
ent from coverage criteria. The practical applicability of our approach was
demonstrated along the lines of an industrial case study. Clearly, the more
complex systems become, the more power is necessary to direct the search in
order to generated test cases for composed systems. The use of constraints
enables one to “help” the system to explicitly disregard certain parts of the
state space. We consider this the key to graceful degradation of our approach.

Test cases were generated from a model. While we have shown for the
smart card example that it is possible to bridge the gap between the different
abstraction levels of model and actual system [2], the general problem persists.

Coverage criteria are syntactic in their nature and must be complemented
by functional, domain-specific tests. In fact, we consider technologies like
the presented one to be only a smart part of the solution to the problem of
testing. The main difficulty is that in general engineers do not know what
to test (which is, among others, one reason to use coverage criteria). Narrow
domain-specific error classifications—and in turn, test case specifications—
might be one approach to solving this problem.

Acknowledgment Jan Philipps built the model and engaged in many stimulat-
ing discussions.

References

[1] F. Huber, B. Schätz, and G. Einert. Consistent Graphical Specification of
Distributed Systems. In Proc. FME’97, LNCS 1313, pages 122 – 141, 1997.

[2] J. Philipps, A. Pretschner, O. Slotosch, E. Aiglstorfer, S. Kriebel, and K. Scholl.
Model-based test case generation for smart cards. Submitted, 2003.

[3] A. Pretschner, H. Lötzbeyer, and J. Philipps. Model Based Testing in
Incremental System Development. The Journal of Systems and Software, 2003.
To appear.

[4] A. Pretschner and J. Philipps. Constraints for test case generation. Submitted
to J. Theory and Practice of Logic Programming, 2002.

[5] S. Rayadurgan and M. Heimdahl. Coverage Based Test-Case Generation using
Model Checkers. In Proc. 8th Intl. Conf. and Workshop on the Engineering of

Computer Based Systems, pages 83–93, 2001.

[6] WAP Forum. Wireless Identity Module. Part: Security. Wireless Application
Protocol WAP-260-WIM-20010712-a, 2001.

[7] J. Wegener, K. Buhr, and H. Pohlheim. Automatic Test Data Generation for
Structural Testing of Embedded Software Systems by Evolutionary Testing. In
Proc. Genetic and Evolutionary Computation Conference, 2002.

[8] H. Zhu, P. Hall, and J. May. Software Unit Test Coverage and Adequacy. ACM

Computing Surveys, 29(4):366–427, December 1997.

10

	Introduction
	AutoFocus model of the WIM
	Generation of MC/DC test suites
	Evaluation
	Related Work
	Conclusion
	References

