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Abstract

Architecture defines the components of a system and
their dependencies. The knowledge about how the archi-
tecture is intended to be implemented is essential to keep
the system structure coherent and thereby comprehensible.
In practice, this architectural knowledge is explicitly for-
mulated only in the documentation (if at all), which usually
gets outdated very soon. This leads to a growing amount
of implicit knowledge during evolution that is especially
volatile in projects with high developer fluctuation.

In this paper we present a case study about the loss of
architectural knowledge in three industrial projects by tack-
ling the following research questions: 1) to what degree
is the architectural documentation kept consistent with the
code? 2) how well does the documentation reflect the in-
tended architecture?, 3) how big is the architectural decay?,
and 4) what are the causes for inconsistencies? We answer
these questions by investigating the architecture documen-
tation, the source code, and by performing interviews with
developers.

The most important outcomes of our study are: the infor-
mal documentation and the source code are not kept con-
sistent with each other, none of them completely reflects the
intended architecture, and even developers taken individu-
ally are not completely aware of the intended architecture.
Quantitatively, between 70% and 90% of these inconsisten-
cies are caused by flaws in the documentation and between
10% and 30% represent architectural violations in the code.

1 Introduction

The architecture defines the structure of a software sys-
tem in terms of components and (allowed) dependencies. A
suitable architecture is a fundamental prerequisite for hav-
ing evolvable and understandable systems [5]. Developers
need knowledge about the intended architecture of a system

whenever they do any modification. Without this knowl-
edge programmers can break the architectural integrity of
the system accidentally, even by making only small code
changes.

The widely used programming languages today have
very primitive mechanisms for making the architecture in
the code explicit. Therefore, in everyday industrial prac-
tice, the information about the architecture is contained in
external documentation in form of diagrams and natural lan-
guage texts that often originate from early phases in the
design of the system. During system evolution, the archi-
tecture often needs to be adapted, extended and modified
in case of changes to the requirements, additional features
or simply by new insights about shortcomings of the initial
design. These changes are inevitable even if an ‘optimal de-
sign strategy’ is used [13], needless to say that this effect is
amplified in an industrial environment. When these changes
to the intended architecture happen, they are often (uninten-
tionally) not introduced into the architecture documentation
and not propagated to other team members [10]. This leads
to a gap between the intended architecture of the system,
how different developers perceive it, how it is made explicit
in the documentation and how it is actually implemented in
the code.

In Figure 1-left illustrates intuitively the ideal situation
when all developers possess accurate knowledge about the
system’s architecture, the architecture is accurately docu-
mented and accurately implemented in the code. The right
side of the figure illustrates the situation typically encoun-
tered in industrial projects: Different developers understand
the architecture of big systems in (slightly) different man-
ners, with none of them having an accurate view of the
intended architecture. Furthermore, only a part of the in-
tended architecture is documented and only a part of the
code complies with it. As depicted in Figure 1-right, the
loss of architectural knowledge can be observed in different
forms: missing architectural information in the documen-
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Figure 1. Loss of architectural knowledge

tation, violations of the architecture in the code, problems
in keeping the code and documentation synchronized and
different perceptions of the intended architecture by the de-
velopers.

In this paper we present an empirical case study on the
loss of architectural information within the evolution of in-
dustrial software. We quantify in what degree the documen-
tation and the code are kept consistent. Furthermore, by
interviewing the developers, we evaluate whether the dif-
ferences are violations of the architecture in the implemen-
tation or if they are insufficiencies of the documentation.
This case study has been done on three industrial business
systems of different age and functionality.

Outline. In Section 2 we briefly describe our approach
for analyzing the consistency between the documented ar-
chitecture and the implementation. In Section 3 we present
three case studies we performed in a collaboration with Mu-
nichRE. In Section 4 we discuss the lessons that we learnt
following our experience. Section 5 poses threats to valid-
ity that could influence our conclusions. We end this paper
with presenting related work in Section 6 and conclusions
in Section 7.

2 Technique and methodology for architec-
ture analysis

In this section our approach to describe the architecture
in a machine-readable form is presented and our technique
to analyze the conformance between the documented archi-
tecture and the code is explained. We exemplify our ap-
proach on C# although the technique can be generalized
easily.

2.1 Architecture conformance analysis

Describing the architecture. In order to do an automatic
analysis the architecture is specified in terms of a set of hi-
erarchical components comp and policies pol among them.
So an architecture description arch can be formalized as

arch = (comp, pol).

Components are the main structuring entities in this de-
scription mechanism. The hierarchy is expressed as a pred-
icate

isSubComp : comp× comp→ bool.

Policies can also be regarded as a predicate

pol : comp× comp→ bool.

A component is always allowed to access its subcompo-
nents:

isSubComp(c1, c2)⇒ pol(c1, c2)

If there is a policy defined between two components, this
specifies that in the implementation the elements that corre-
spond to these components may have dependencies between
each other (in the specified direction). Every dependency
that is not explicitly allowed by such a policy is forbidden.
In many cases the architecture specifies a structure of the
system such that certain components are decoupled. If no
policy explicitly allows two components to be coupled with
each other, then no dependency is allowed at the code level.

Describing the code. In object-oriented systems every el-
ement of the code is encapsulated in types (in .NET these
types are defined as classes, structs, enums, . . . ). So for
architecture conformance analysis a system

sys = (types, dep)

can be regarded as a set of types types and a set of depen-
dencies dep between them. The number of dependencies is
expressed by the function

dep : types× types→ N

A type t1 is dependent on another type t2 if t2 (or one of
its elements) is used in t1 as defined in Table 1.

Invocation of a method/constructor
Access of a property or field
Extending a class/struct, implementing an interface
Usage of a class/struct/enumeration as a type
(for a field, variable or parameter)
Annotation of an attribute

Table 1. The dependencies in the code
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namespace ProjectX.Gui;

class GUIClass{

   public static int SomeField = 0;

   

   void SomeGUIMethod(){ …

      ProjectX.Application.AppClass.SomeAppMethod(); 

   }

}

namespace ProjectX.Application;

class AppClass{

   public static void SomeAppMethod(){ …

      x = ProjectX.Gui.GUIClass.SomeField;

   }

}

Documentation Implementation

comp ={Presentation, GUI, Application}

isSubComp(Presentation, GUI) = true

pol(Application, GUI) = true

types ={GUIClass, AppClass}

dep(GUIClass, AppClass) = 1

dep(AppClass, GUIClass) = 1

(map(GUIClass) = GUI Ù map(AppClass) = Application Ù Ø pol(Application, GUI) Þ dep(AppClass, GUIClass) = 0) → true 

(map(GUIClass) = GUI Ù map(AppClass) = Application Ù Ø pol(GUI, Application) Þ dep(GUIClass, AppClass) = 0) → false

map(GUIClass) = GUI

map(AppClass) = Application

<component id=“Presentation“>

<component id=“GUI“>

<elements regex=“ProjectX.Gui.*“/>

</component>

</component>

<component id=“Application“>

<elements regex=“ProjectX.Application.*“/>

</component>

<allow from=“Application“ to=“GUI“/>

Components

Mapping to code

Policies

Figure 2. The architecture description mechanism

Checking conformance. To map the architecture descrip-
tion to the system we need to define a code mapping as a
function map : types→ comp. If the architecture descrip-
tion is completely in conformance with the implementation
(no not allowed dependencies) the following condition must
hold:

map(t1) = c1 ∧map(t2) = c2 ∧ ¬pol(c1, c2)⇒ dep(t1, t2) = 0

We will write ‘there are x differences between from com-
ponent c1 to c2’ if the condition does not hold with the left
hand side being true but the right hand side being false with
dep(t1, t2) = x and x > 0.

Technical execution of the analysis. The architecture is
specified in a machine-readable form in a XML-file. Fig-
ure 2-left shows an example architecture: it contains three
components (i.e. Presentation, GUI and Application), GUI
is a subcomponent of Presentation and there is a policy de-
fined that allows the Application component to be depen-
dent on GUI. The figure illustrates how this simple example
is described using XML. This file contains a simple XML
description of hierarchical components and their mapping
to types in the source code based on regular expressions.
These expressions are used to map the full-qualified names
of the types in the implementation to the components. Ad-
ditionally, allow-tags are defined to describe the policies of
how the components may depend on each other. The right
hand side of Figure 2 illustrates the implementation level:
A green arrow represents an allowed dependency from the
Application to the GUI component. Using a red arrow a de-
pendency is shown that violates the specification on the left

hand side due to an access from the GUI to the Application
component. The formalisation is given in the lower part of
the figure.

All projects that are subject to the case study are imple-
mented using the .NET framework. The analysis is per-
formed using the Continuous Quality Assessment Toolkit
(ConQAT) [2]1. It calculates the set of dependencies that
are not explicitly allowed in the architecture description.

2.2 Methodology

Analysis steps. Figure 3 illustrates the steps needed to
perform an architecture analysis on a system:

Step 1: From documentation to 

XML description.

Step 2: Automatic analysis.

Step 3: Developer feedback.

Step 4: Updating the 

architecture description.

Done

Figure 3. Analysis steps

1conqat.in.tum.de
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Step 1: Translation of the architecture documentation
into the machine-readable XML representation. In this step
we obtain a XML description of the architecture as it was
originally documented.

Step 2: Checking the conformity of the code with respect
to the current XML architecture description. This step uses
the automatic analysis and has a list of inconsistencies be-
tween the XML document and the code as a result. These
inconsistencies are either due to an insufficient description
of the intended architecture in the current XML-file or vio-
lations of the intended architecture in the code.

Step 3: Discussion of the results with the developers. We
discussed the results of step 2 with the developers in order
to classify the differences into violations of the intended ar-
chitecture at code level or deficiencies in the current XML
architectural description (this classification uses the implicit
knowledge about the system that is only in the heads of de-
velopers, if at all). If there are differences in the output of
the analysis that are not regarded as violations, the XML de-
scription of the architecture does not represent the intended
architecture yet. In this case the architecture description has
to be adapted by doing step 4. If the developers regard all
of the differences as code deficiencies then the process is
complete.

Step 4: Refinement of the architecture specification by
considering the implicit knowledge that was not present in
the documentation and revealed in step 3. After that step 2
has to be performed.

After each iteration the architecture defined in the XML
description converges to the intended architecture. Ev-
ery modification that is necessary in the XML description
(step 4) during our iterations are regarded as flaws in the
original documentation due to the changes in the architec-
ture that were not documented (due to the architectural
drift [11]). After two to four iterations of the steps 2, 3
and 4, the architecture description was regarded as a pre-
cise specification of the intended architecture by the team
members. Using the final XML description that contains
the intended architecture, we are able to perform a final ar-
chitecture analysis to measure the violations in the code of
the intended architecture (and thereby to measure the archi-
tectural decay [11] of the code).

Outputs of the analysis. During the analysis process we
compute the following sets:

- missingComp: The set of components that are imple-
mented in the system but are missing in the documentation.

- relocComp: The set of components that changed their
super components. A component x is called a ‘relocated
component’ if isSubComp(x, a) is specified in the docu-
mentation and isSubComp(x, b) reflects the intended ar-
chitecture (a 6= b).

- polMod: The set of policies that were introduced or

modified during the process of the analysis (in step 4).
- depall: The set of dependencies between the compo-

nents in the system:

|depall| =
∑

t1∈types

∑
t2∈types

dep(t1, t2)

- diff doc: The subset of dependencies (diff doc ⊂ depall)
that represent differences between the original documenta-
tion of the architecture and the implementation. This set
is computed after the first run of step 2. These differences
reflect the divergence between the documented and the im-
plemented architecture.

- diff intend: The subset of diff doc that the architecture
analysis revealed after the whole process was finished. The
architecture description obtained after the iterations reflects
the intended architecture. Therefore, all dependencies in
diff intend are violations in the code.

3 The case study

We start this section with presenting the research ques-
tions addressed by our case study, continue with describing
the experimental setup, present the quantitative results of
our analyses, and finally present an interpretation of the re-
sults measured.

3.1 Research questions

Q 1: To what degree is architecture documentation kept
consistent with the implementation during system evolu-
tion? The entry point to our analyzes deals with the re-
lation between the documented and the implemented archi-
tecture. If differences can be identified, this indicates that
either the implementation violates the intended architecture
or that modifications of the architecture during the system
evolution are not propagated to the documentation. We an-
swer this question by calculating the amount of differences
relative to the dependencies in the code:

reldiff =
|diff doc|
|depall|

.

Q 2: How well does the documentation of the architec-
ture reflect the intended architecture? A vague or outdated
description of the architecture is inadequate for conserving
architectural knowledge for software maintenance and evo-
lution. The quality of the documentation is related to the
explicit knowledge about the project that the team members
can always refer to. If no precise and up-to-date documen-
tation of the architecture exists, new project members will
have difficulties in learning the architecture. We measure
the amount of implicit knowledge in terms of documenta-
tion flaws defined as:

docflaw =
|diff doc| − |diff intend|

|diff doc|
.

4



Additionally, the numbers of components that were undoc-
umented |missingComp| or relocated |relocComp| as well as
the policies that had to be modified |polMod| are metrics for
measuring the divergence between the documented and the
intended architecture.

Q 3: How big is the architectural decay? This question
should clarify to what degree violations of the intended ar-
chitecture can be found in the code. The architectural decay
can be measured in terms of violations:

viol =
|diff intend|
|diff doc|

Q 4: What are the causes of inconsistencies between
the intended architecture and the code? We investigate the
causes of the introduction of architectural violations into the
code as well as why documentation is not kept up to date.
This is a qualitative question that we answer based on the
interviews with developers (step 3).

3.2 Experimental setup

Industrial environment. The case study was done in a
collaboration between MunichRE and Technische Univer-
sität München. MunichRE is a big reinsurance company
with about 39.000 employees worldwide. For the insurance
branch it is typical to make heavy use of individually de-
veloped software to support the business processes such as
sales, risk calculation or capital investments. At MunichRE
software development is done mainly by external develop-
ers. This leads to relatively high fluctuation of developers.
A specially tailored RUP-like engineering process has to be
applied to every software project. This process prescribes
that an architecture documentation must be created in every
project. To ensure a seamless hand-over between develop-
ers, the maintainability of the software products must be
high. Thus, the systems must be implemented in a compre-
hensible and homogeneous way. A prerequisite for these
desiderates is to manage the architectural knowledge by
making it explicit.

The projects. We investigated three typical business sys-
tems implemented in C#. We emphasize on the fact that at
MunichRE these projects are considered to be of good qual-
ity and successful. They are in productive use by 10 to 150
users in different departments of MunichRE. All of these
systems have been developed by developers from different
software development contractors. During the initial devel-
opment there were up to 12 developers involved in each
project. After these systems went productive, the number
of developers was reduced. The systems are all still further
extended and evolved.

Project A is a typical rich client application is further de-
veloped and maintained. The system is in production for

about 5 years. It provides insurance risk calculation func-
tionalities. Currently 5 developers evolve the system. There
have been personal fluctuations so that there is currently
none of the initial developers in the team. The architecture
documentation of Project A is a text document that con-
tains a component diagram consisting of hierarchical com-
ponents (boxes). These components are connected via ar-
rows that represented allowed dependencies. This diagram
was the most important source of architecture information.

Project B is a web-based information system. With a
lifetime of 6 years in production this is the oldest of the
investigated projects. It is used for doing financing and in-
vestment calculations. Currently there are 4 developers in-
volved in maintaining the project. Like in Project A, there
have been personnel fluctuations so that none of the initial
developers works in the project anymore. In Project B, the
architecture is described by diagrams similar to UML pack-
age diagrams.

Project C is also a web-based system. It is the youngest
of the systems and under development for about 2 years. It
provides functionality for managing risk information about
certain clients of MunichRE. An average number of 3 de-
velopers evolve the system. It is in productive use only for
about 7 months. The architecture documentation of Project
C is also a text document which contains diagrams that
illustrate components and their relations by boxes and ar-
rows.

Age kLOC Developers
Project A 5 454 5
Project B 6 317 4
Project C 2 495 3

Table 2. Data concerning the projects

In Table 2 we present the projects at a glance: their
age, their size code and the current number of developers
that maintain the systems. We remark that the size of the
projects is in the same magnitude. However, Project C is
the biggest even if it was the most recently started and even
if it has the least number of developers assigned for mainte-
nance and evolution.

Table 3 shows the size of the documented architecture
in terms of the number of components and the number of
policies (allowed accesses between two components). We
should also remark the big number of policies in the case
of Project A and C (they contain only 24, respectively 37,
components and have allowed many policies). In contrast
to projects A and C, Project B contains much more compo-
nents (60) and almost the same number of policies (106) as
Project C. So the description of Project B is of much finer
granularity and its architecture is much more restrictive.
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Components Policies
Project A 24 79
Project B 60 106
Project C 37 102

Table 3. Initial description of the architecture

3.3 Quantitative Results

Table 4 presents the number of modifications of the ar-
chitecture description during the iterative refinement. The
first column shows the number of relocated components
relocComp. Such a relocation is, for example, moving a
subcomponent of the Business component to the DataAc-
cess component. The second column represents the num-
ber of components that were not documented and intro-
duced during the analysis process (step 4). The third col-
umn shows how many policies have been modified or in-
troduced additionally to the documented ones. No policies
have been removed without substitution. This shows that
the documented architecture usually has less policies than
the architecture actually implemented. In other words, the
documented architecture seems more modular than the one
that is really implemented.

relocComp missingComp polMod
Project A 0 2 8
Project B 6 2 24
Project C 2 1 9

Table 4. Modifications of the architecture
specification during steps 3 and 4

Table 5 shows the main results of our analyses. The dep
column presents the number of dependencies that the ar-
chitecture conformance analysis identified in the systems.
These dependencies were validated against the XML archi-
tecture description. The diff doc column presents the results
of the conformance analysis, namely the number of depen-
dencies that did not conform to the specified architecture.
The docflaw and viol the columns contain the percentage of
the non-conform dependencies that are flaws in the docu-
mentation and respectively violations of the architecture in
the implementation.

dep diffdoc docflaw viol
Project A 8.254 994 (12%) 90% 10%
Project B 4.385 376 (9%) 72% 28%
Project C 5.388 (2238) 1039 (19%) 88% 12%

Table 5. Results of the analysis

System A. In system A a subset of 994 (out of 8.254) de-
pendencies were identified as differences between the doc-

umented and the implemented architecture (12%). As Ta-
ble 4 shows, 8 policies had to be added and 2 components
were introduced in order to get from the documented to the
intended architecture during the analysis process. After the
completion of the analysis, about 10% of these differences
were identified as violations of the intended architecture
within the implementation. The other dependencies were
mostly undocumented modifications of the architecture dur-
ing the evolution of the system.

Figure 4 shows a visualization of the results of the anal-
ysis of system A. This kind of visualization, created using
the graph visualization tool ‘dot’ [7], was integrated into
the view of results in the projects’ dashboards and repre-
sented the entry point in obtaining feedback from the de-
velopers. Red arrows represent violations of the specified
architecture, green ones are allowed dependencies. Addi-
tionally to these visualization, detailed lists of the identified
differences are used as inputs for discussion.

System B. The results of the analysis of Project B re-
vealed a lower number of differences between the doc-
umented and the implemented architecture (376 out of
4.385). Much more adaptations of the architecture descrip-
tion were needed in Project B (Table 4) after the discussions
with the developers to get a description of the intended ar-
chitecture. The architecture description of this project was
much more detailed and fine-grained in the documentation
(Table 3). A relatively high share of architecture violations
(28%) of the 376 differences were identified.

System C. After the first analysis of system C based on
the initial architecture description we identified a very large
number of differences (2.238 – effectively 42%). By look-
ing at the system more closely it revealed that this extreme
result has been affected by a single cause: The system was
built using so called “data binding technique” offered by
the .NET framework. This technique implies dependencies
directly from GUI-parts to data access components. These
dependencies were not allowed in the initial specification
of the architecture. Although these dependencies are differ-
ences between the specification and the implementation of
the architecture, these have in contrast to usual architecture
violations not been introduced due to a developer’s lack of
knowledge about the architecture. For that reason the XML
architecture description was modified accordingly (i.e. we
introduced a new policy to allow these dependencies), and
a lower value of 1039 (ca. 19%) differences was measured.
This value was used for the further steps of the case study.
Based on these differences 12% revealed to be architecture
violations which is a very similar value to Project A. Also
the number of adaptations of the documented architecture
were in a similar range than in Project A (Table 4).
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Figure 4. An example for the visualization of the results of the architecture analysis (Project A)

3.4 Interpretation of the results and answers to
the research questions

Q 1: To what degree is architecture documentation kept
consistent with the implementation during system evolu-
tion? Following our automatic analysis of the architecture
conformance, a significant number of differences between
the documented architecture and the implementation have
been found in all three projects. As shown in Table 5 be-
tween 9% and 19% of all the dependencies that are imple-
mented in the systems could not be identified in its corre-
sponding specification. These differences represent either
documentation flaws or violations of the intended architec-
ture in the code. The reldiff values of the projects reflect
that Project B has the least differences, but even in this case
the amount of discrepancies is significant (every tenth de-
pendency in the system cannot be found in the documen-
tation). In the worst case (Project C) almost one fifth of
the dependencies do not conform with the documentation.
This significant desynchronization between the documenta-
tion and the code led developers regard the documentation
as an unreliable source of architectural information.

Q 2: How well does the documentation of the architec-
ture reflect the intentions of the architect? The documenta-
tion flaws were identified after performing interviews with
the developers (step 3). Many of these interviews caused
vivid discussions among developers due to their different
perceptions of the intended architecture. The outcome of
these interviews were policies that had to be added to the
architecture specification. Table 5 shows that between 72%
and 90% of the differences between the documented and the
implemented architectures are due to flaws in the documen-
tation. Table 4 summarizes the modifications of the initial
documentation that were made during the analysis process.
As the projects A and C needed an almost equal amount of
modifications, Project B caused more changes that had to

be integrated into the architecture description. The reason
therefore is the more fine-grained architecture definition in
Project B.

In summary most of the differences (diff doc) must be re-
garded as deficiencies of the documentation. The documen-
tation flaws are a measure of architectural drift, namely the
measure in which the initially intended architecture devel-
oped further over time.

Q 3: How big is the architectural decay? The last column
of Table 5 shows the architectural violations measured in
the projects. The relative amount of architecture violations
in the systems is between 10% and 28%. Although Project
B has the highest relative value in that table (28%), the abso-
lute number of violations that had to be removed in the ana-
lyzed systems is with about 100 dependencies almost equal.
The fine-grained architecture description of Project B pro-
vokes that the analysis can be regarded to be more precise.
Due to that more violations could be identified. Addition-
ally, the architecture of system B is much more restrictive
than the architecture description of the other projects (Ta-
ble 3). As a consequence fewer dependencies are allowed
an though developers more likely introduce violations.

Q 4: What are the causes of inconsistencies between the
intended architecture and the code? Most of the documen-
tation flaws are caused by new insights during the imple-
mentation phase. For example, system A should contain no
dependencies between the GUI and the DataAccess com-
ponent. However, our analysis revealed dependencies be-
tween these components. After further investigations the
developers told us that these were uncritical and allowed be-
cause they were needed to access specific data during sys-
tem startup. At startup time the business components that
are usually used for acquiring data are not present. This
is an example for a refinement of the architecture that was
performed during the implementation of the system. During
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the design phase it was overlooked that such a dependency
is necessary. However, this knowledge had not been intro-
duced into the documentation.

The developers regard the architecture documentation as
a relict from the very beginning of the project when the ar-
chitecture was initially created. So the architecture docu-
mentation is seen rather as an artifact that should ease the
constructive phase (design) rather than a description of the
system for long-term maintenance and evolution. The rel-
atively high amount of documentation flaws is not due to
‘laziness’ of the developers. Many times developers do
simply not remember that there are parts in the documen-
tation that should be modified consistently. This can be
regarded as a lack of availability of ordinary documenta-
tion. Thus, documentation becomes a dead artifact that is
used very infrequently. Many times the developers (espe-
cially in Project C) knew that the documentation was out-
dated.They explained that redocumentation activities are of-
ten postponed due to the higher priority of the implementa-
tion of new features or bug-fixes in their daily work.

During our analyzes we identified several even critical
architecture violations. In Project A, for example, the fol-
lowing violations have been identified: several invocations
of methods had been implemented that launched transac-
tions in an non-adequate way (using the wrong interface).
This caused several unneeded transactions and a significant
loss of performance. This violation was caused by a devel-
oper that did not use the interfaces that were intended to be
used for that purpose. The explanation of the developers
was that the implementer of these pieces of code did not
know which components should be used to achieve these
tasks. This shows that not all of the developers were aware
of the intent and the adequate usage of the architecture.

Another example for a typical reason of a violation is
copy and paste programming. Many times the headers of
files have been copied and pasted to be used as a template
for the implementation of new classes. Unfortunately, the
namespace declaration was often part of the copied lines
and it had been missed to modify it accordingly. How-
ever, although that seems not so critical, it is difficult for
another developer to identify this as a copy&paste problem
and to understand that the class should be declared some-
where else.

4 Lessons learnt

Architectural knowledge gets lost. Developers do not
understand the complete architecture of the system and es-
pecially how it is reflected in the code. The main cause is
the myriad of details at the code level and the big abstrac-
tion gap between architectural specifications and the imple-
mentation. Instead of performing tedious work for under-
standing and recovering (guessing) the intended architec-

ture, we advocate to an approach to conserve the architec-
tural knowledge and how it is implemented in the code.

Conformance checking is a catalyzer for discussions.
The case study revealed that a more structured documenta-
tion in a machine-readable form and an automatic analysis
gives the architecture a bigger awareness in the develop-
ment team. Several discussions on the correct usage of the
architecture were raised during the case study. So the dif-
ferent views on the intended architecture by the team mem-
bers were synchronized and introduced into an explicit doc-
umentation.

Continuous architecture analysis. To ensure that the ar-
chitecture description will be kept consistent with the code
as a specification of the intended architecture in the future
we integrated the architecture conformance analysis into the
nightly build of the projects. The architecture description
was inserted into the version control system so that the de-
velopers could access it easily. The results of the analysis
can be accessed by the developers via a link in the project
dashboard. The architecture got a more central role within
the projects. The continuously checked architecture doc-
umentation in machine-readable form had a better avail-
ability and visibility within the projects than the text doc-
uments. All of the developers agreed that due to the inte-
gration of the architecture knowledge with the system using
a continuous analysis of the consistency between the archi-
tecture description and the system, a better way of conserv-
ing the architectural knowledge within the projects could be
achieved.

Furthermore, the continuous assessment enables a detec-
tion and resolution of potential architecture violations and
design modifications early to the point in time when they
were introduced. Thus, it can be decided very soon whether
it is a violation or a design drift. So the costs of remov-
ing violations or adapting the documentation are rather low
because the responsible developer still knows what he was
working on and only low further efforts (like testing) have
to be redone due to the modifications in the program.

Even several weeks after the main case study was done
the developers reported that they looked at the results of the
analysis in their project dashboards every morning. Due
to the integration of the analysis into the nightly build an
active way of managing the architecture knowledge within
the projects was achieved. The architecture description in
XML form stayed up-to-date (synchronized with the code)
at least for the time we stayed in contact with the project
(which was about a year in case of Project A).

Efforts needed. The efforts of establishing the analysis,
the configuration of the dashboard and the creation of the
XML architecture description cost about 5 days of work for
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each project. The most efforts were the reverse engineering
and the discussions about how the appropriate architecture
should look like. After the initial costs the nightly analyzes
cause only little efforts to modify the architecture definition
due to changes in the system. In Project A only four archi-
tectural changes happened in about a year. But this may of
course vary between different project.

5 Threats to validity

Internal validity. Our evaluation of loss of architectural
knowledge is based on several assumptions that have a po-
tential to influence our results.

Hidden knowledge. Our work for identifying the in-
tended architecture of the three systems is based on itera-
tive inspections of the difference between the documented
architecture and the code. These differences represent the
basis of our discussions with the developers. However, it
could happen that the documentation and the code match
well in a certain respect (even if they are biased from the
intended architecture). In these situations our method does
not identify the intended architecture. Such situations influ-
ence the completeness of our approach and do not influence
the quantitative results of the architectural loss (the loss
of architectural knowledge would be even bigger in such
cases).

Translation from textual documentation into checkable
form. The translation of the informal documentation to the
machine-readable XML-representation of the architecture
might affect some of the results measured. Some informa-
tion contained in the informal documentation might have
been overlooked or misinterpreted, then the results mea-
sured after the initial execution of the analysis (step 2) might
be biased. However, the same effect might take place when
a developer that is unfamiliar with the system tries to learn
the architecture by studying the documentation.

The developers themselves do not know exactly what the
architecture was intended to look like. In some situations
we asked the developers and the architect about some de-
tails of the architecture and they were not able to answer
our questions immediately. There have been some ques-
tions that they had to discuss within the team before they
could give us precise information about the architecture-to-
be. This effect may influence the results of the case study
because such a team decision might not reflect the intended
architecture.

Hidden dependencies. There can be dependencies at the
code level, e.g. generated by the use of reflection, that we
did not analyze. In these cases the measurements would
be flawed. However, our manual inspection of the code and
the feedback of the developers made us be confident that we
considered most common types of dependencies (as shown
in Table 1).

External validity. There are several particularities of the
investigated projects that could influence the generalization
of our results to other projects.

The environment at MunichRE might influence the re-
sults. Subject to the case study have been three projects
that have been carried out by different developers that are
employed at different companies. Nevertheless, each of the
project was done in the environment of MunichRE. All the
projects used the same development process, a similar in-
frastructure and similar technologies (.NET). Due to that
the external validity of the results may be limited. If the
case study would have been conducted in another company
the measures might vary. Additionally, three projects might
be too few to gain representative results.

6 Related work

Checking the conformance of architecture. In the re-
verse engineering literature are several approaches for
checking the architectural conformance with respect to
high-level models [9, 4]. [4] proposes an approach to check
the compliance of OO designs with the source code by map-
ping designs expressed in OMT to C++ programs. Our tech-
nology for specifying architecture and checking its confor-
mance with the code is similar to the reflexion models de-
veloped by Murphy [9]. Even if our technique for checking
the conformity of the architecture documentation with the
code is similar, our focus is different. In this paper we in-
vestigated the loss of architectural knowledge in the systems
evolution and the usefulness of explicit high-level models to
make this knowledge explicit.

[3] proposes an approach to use declarative queries to
specify structural dependencies and check them against the
implementation. These queries are continuously run during
the development. Our experience confirms the need to in-
tegrate architectural checks in the development process and
thereby to prevent the loss of architectural knowledge.

Related case studies. [14] investigates how companies
identify design erosion and address the preservation of the
design. The case study is based on a qualitative analysis by
performing interviews with developers. Among the major
causes for the design erosion the authors identify the lack of
knowledge of developers about the original design decisions
and too little attention to design during evolution due to the
pressure of releases. Our observations support these con-
clusions. We advocate that the preservation of architectural
knowledge can be supported through continuous checking
of the code and the documentation. Our approach in this
paper is both quantitative (by measuring the discrepancies
between the documentation and the code) and qualitative
due to the contact with developers.
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The case study in [12] illustrates the difficulty involved
in detecting deviations of the code from the intended design
that occur in the presence of personnel fluctuation. The au-
thors propose the usage of metrics as principal means to
detect the deviations. In this paper we advocate on the need
to continuously maintain and check the consistency of an
explicit representation of the intended architecture.

In [8] the authors present experiences from using archi-
tectural models in an industrial project. They report on huge
efforts on keeping the models consistent with the implemen-
tation. Our results confirm the results obtained in this case
study. Our approach of checking the consistency between
the documentation (the model) and the implementation has
the potential to reduce some of these efforts.

Architectural knowledge management. The authors of
[1] draw a distinction between a personalization strategy
and codification strategy for architectural knowledge man-
agement. On the one hand, the personalization strategy is
mainly used in industry and emphasizes on the interaction
among developers. On the other hand, the codification strat-
egy is the basis for most of the research approaches in the
area of knowledge management and concentrates on iden-
tifying and storing knowledge in artifacts and repositories
[6]. In our work we advocate on the usefulness of the cod-
ification based approaches since they make the knowledge
explicit, and this is of capital importance especially in the
presence of personnel fluctuations when a pure personal-
ization strategy is impossible. Furthermore, whenever dif-
ferences are found by the analysis, they are catalizers for
discussions among developers and entry points for a per-
sonalization strategy.

7 Conclusions

In this paper we present our experience in evaluating the
loss of architectural knowledge in three industrial projects
at MunichRE. Following our study we identified three man-
ifestations of loss of architectural knowledge: decay of the
code in form of violations of the intended architecture, loss
of information in the documentation and different percep-
tions of the intended architecture by different developers.
The central outcome of this case study is that we discovered
that between 9% and 19% of all the dependencies imple-
mented in the systems did not conform to the documented
architecture. These differences could be identified as insuf-
ficiencies in the documentation as well as violations in the
implemented architecture. So the real intended architecture
was buried as implicit knowledge somewhere in between
these artifacts as well as the knowledge of the developers
and the architect. The main lesson learnt is that in order to
minimize the knowledge loss we need to make the knowl-
edge about the intended architecture explicit and perform

automatic architecture conformance analyzes continuously
in order to keep the awareness of developers about the ar-
chitectural knowledge.
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