
COPE: A Language for the Coupled Evolution
of Metamodels and Models

Markus Herrmannsdoerfer1, Sebastian Benz2, and Elmar Juergens1

1 Institut für Informatik
Technische Universität München

Boltzmannstr. 3, 85748 Garching b. München, Germany
{herrmama, juergens}@in.tum.de

2 BMW Car IT GmbH
Petuelring 116, 80809 München, Germany

sebastian.benz@bmw-carit.de

Abstract. Domain-specific modeling promises to increase productivity
by offering modeling languages tailored to a problem domain. Such mod-
eling languages are typically defined by a metamodel. In consequence of
changing requirements and technological progress, the problem domains
and thus the metamodels are subject to change. Manually migrating
models to a new version of their corresponding metamodel is costly, te-
dious and error-prone and heavily hampers cost-efficient model-based
development in practice. The coupled evolution of a metamodel and
its models is a sequence of metamodel changes and their correspond-
ing model migrations. These coupled changes are either metamodel-
specific or metamodel-independent. Metamodel-independent changes can
be reused to evolve different metamodels and their models which leads
to reduction of migration effort. Tool support is necessary in order to
benefit from potential reuse. We propose a language that allows for de-
composition of a migration into manageable, modular coupled changes.
It provides a reuse mechanism for metamodel-independent changes, but
is at the same time expressive enough to cater for complex, metamodel-
specific changes.

1 Introduction

Due to their high level of abstraction, modeling languages are a promising ap-
proach to decrease software development costs by increasing productivity. Conse-
quently, a variety of metamodel-based approaches for the development of model-
ing languages, such as Model-Driven Architecture [1], Software Factories [2] and
Model-Integrated Computing [3] have been proposed in recent years. Significant
work in both research and practice has been invested into tool support for the
initial development of modeling languages. As modeling languages are receiving
increased attention in industry, their maintenance is gaining importance.

Although often neglected, a language is subject to change like any other
software artifact [4]. This holds even for general-purpose languages: e. g. Java,

2

although relatively young, already has a rich evolution history. Domain-specific
modeling languages are even more prone to change, as they have to be adapted
whenever their domain changes due to technological progress or evolving require-
ments. A modeling language is evolved by adapting its metamodel to the new
requirements. As other components like editors and interpreters depend on the
metamodel, they have to be reconciled with the evolved metamodel. Further-
more, existing models have to be migrated so that they can be used with the
evolved modeling language. Since the number of existing models of a successful
modeling language typically outnumbers the number of editors or interpreters,
model migration effort dwarfs tool reconciliation effort.

In order to circumvent model migration in current practice, language evo-
lution is often performed in a downwards-compatible fashion. In other words,
the language is changed in a way that the old models can still be used with
the new language version without migration. However, downward compatibil-
ity heavily constrains language evolution and threatens language simplicity and
quality, since preservation of all old language constructs can unnecessarily clutter
and complicate a language. A prominent example is the introduction of Gener-
ics to Java, where backward compatibility is achieved by erasing all information
about generic types during compilation. However, this technique leads to a lot
of limitations and exceptions in applying generic types, as different types are
treated uniformly during runtime by the Generics-unaware Java virtual machine
[5]. To overcome restrictions of downward-compatible language evolution, better
support for coupled evolution is required. Consequently, coupled evolution has
been identified as one of the central challenges in software evolution [6].

To better understand the nature of coupled evolution3 of metamodels and
models in practice, we performed a study of the evolution history of two real-
world metamodels [7]. It confirmed that metamodels do evolve in practice and
that most metamodel changes require a migration of existing models. The study’s
main goal was to determine substantiated requirements for tool-support for cou-
pled evolution. More specifically, we investigated whether reuse of coupled evolu-
tion operations can significantly reduce evolution effort. To this end, we catego-
rized coupled changes into metamodel-specific and -independent changes. When
a change is metamodel-specific, the corresponding model migration is as well,
else, it can be reused across metamodels. Our results showed that there is large
potential for reuse of coupled change operations, since more than three quar-
ters of all coupled changes were not metamodel-specific. A suitable library of
coupled evolution operations can thus provide significant reduction of evolution
effort. On the other hand, the remaining quarter of the coupled changes were
metamodel-specific and therefore required a custom model migration. The anal-
ysis thus indicated that, in order to best support the sequence of metamodel-
specific and -independent changes that make up language evolution, suitable
tool support must satisfy two central requirements: Reuse of coupled evolu-
tion operations is required to take advantage of the high amount of recurring

3 Throughout the paper, we use the term coupled evolution instead of the term co-
evolution, as we feel it better conveys the notion of coupling.

3

metamodel-independent changes. Expressiveness is required to cater for complex
transformations involved in metamodel-specific coupled evolution operations.

Currently, to our best knowledge, there is no approach that combines both
the desired level of expressiveness and reuse. To alleviate this, we present COPE,
a language for the coupled evolution of metamodels and models that provides
both reuse of recurring coupled evolution operations and the expressiveness to
describe custom evolution steps. COPE offers an expressive language to specify
the adaptation of the metamodel together with its corresponding model migra-
tion as coupled transactions. Generalization of coupled transactions allows for
reuse of recurring coupled changes across metamodels. Coupled transactions are
composeable in the sense that the evolution from one metamodel version to the
next can be composed of manageable, modular transactions, thus allowing for
flexible combination of reusable and custom individual coupled changes.

Outline. In Section 2, we identify the need for a new language by analyzing
existing approaches to automate model migration in response to metamodel
adaptation, and motivate COPE by related work from schema evolution. We
introduce the concepts that form the basis of our coupled evolution language in
Section 3. In Section 4, we explain in more detail how the language concepts are
implemented for use with the Eclipse Modeling Framework [8]. In Section 5, we
present the tools that were developed to support the application of COPE. We
conclude and state directions for future work in Section 6.

2 Related Work

Recently, the literature provides some work that tackles the problem of meta-
model evolution. As a first work, Sprinkle discusses the problem of metamodel
adaptation and highlights the conceptual differences between model migration
and model transformation [9]: contrary to a transformation, a migration needs
to be only specified for the metamodel elements which have actually changed.
In order to reduce the effort for model migration, the author proposes a visual,
graph-transformation based language for the specification of model migration
[10]. While the language allows to compose a comprehensive migration of man-
ageable steps, it does not provide a mechanism to reuse recurring migration
knowledge. Gruschko et al. envision to automatically derive a model migration
from the difference between two metamodel versions [11, 12]. The approach pro-
vides reuse by attaching a default migration for most primitive changes, but
leaves open how complex migrations are handled. Wachsmuth adopts ideas from
grammar engineering and proposes a classification of metamodel changes based
on instance preservation properties [13]. Based on that, the author plans to pro-
vide a set of high-level primitives that are able to adapt the metamodel as well
as to migrate models. While the approach allows to easily compose the high-
level primitives, it does not provide an expressive language for the specification
of complex migrations. In a nutshell, existing approaches to automate model
migration either focus on expressiveness or reuse.

4

There are several areas in computer science that are subject to the problem
of coupled transformation [14], e.g. schema evolution, grammar evolution and
format evolution. As the problem of schema evolution has been a field of study
for several decades, it has probably received the closest investigation. The history
of the proposed approaches demonstrates a progression in terms of expressiveness
and reuse which we want to outline here by means of representative examples. For
the ORION database system, Banerjee et al. propose a fixed set of primitives that
perform coupled evolution of the schema and data [15]. While highly reusable,
their approach is limited to local schema restructuring. To allow for non-local
changes, Ferrandina et al. propose separate languages for schema and instance
data adaptation for the O2 database system [16]. While more expressive, their
approach does not allow for reuse of coupled transformation knowledge. In order
to reuse recurring complex coupled evolutions, SERF, as proposed by Claypool
et al., offers a mechanism to define arbitrary new high-level primitives [17],
thus achieving both expressiveness and reuse. The combination of an expressive
language to specify change and an abstraction mechanism to provide reuse, as
proposed by SERF, inspired the language we propose in this paper.

3 Coupled Evolution of Metamodels and Models

A metamodel evolves, when it is modified in order to adapt to a changed problem
domain. Existing models must be migrated in order to conform to the adapted
metamodel. We refer to the combination of metamodel adaptation and model
migration as coupled evolution. Figure 1 depicts the concept of coupled evolution,
where each metamodel adaptation has a specific model migration.

Metamodel

Model

Adaptation

Migration

Fig. 1. Coupled evolution of metamodel and model

The metamodel adaptation is usually performed manually in the modeling
tool that is used to edit the metamodel. In contrast, model migration is en-
coded as a model transformation that transforms a model such that the new
model conforms to the evolved metamodel. There are multiple languages for
model transformation that can be used to encode model migrations. In general,
we distinguish between exogenous and endogenous model transformation, based
on whether source and target metamodel of the transformation are different or

5

not [18]. Languages for exogenous model transformation usually require to spec-
ify the mapping of all elements from the source to the target metamodel. As
typically only a subset of all metamodel elements are modified during a lan-
guage evolution step, an exogenous transformation for model migration contains
a high fraction of identity rules. A language for endogenous model transforma-
tion is better suited to the nature of model migration, as it has to address only
those metamodel elements for which the model needs to be modified. However,
endogenous transformations require the source and the target metamodel to be
the same which is not the case during language evolution.

3.1 Coupled Transactions

For this reason, model migration is best served by a language that allows to
combine the properties of both languages for exogenous and endogenous model
transformation: one need to be able to specify the transformation from a source
metamodel to a different target metamodel, but only for the metamodel elements
for which a migration is required. In order to achieve this, we propose to soften
the conformance between a metamodel and its model during coupled evolution:
the metamodel can first be adapted regardless of its models, and the model can
then be migrated to the evolved metamodel. Therefore, COPE provides a num-
ber of expressive primitives to encode both metamodel adaptation and model
migration independently of each other. However, softening the conformance dur-
ing model migration comes at the price that a model may not always conform
to its metamodel. In order to enforce conformance after a certain change to
metamodel and model, we introduce the following notion: A coupled transaction
is defined as an operation that evolves the metamodel and migrates the model
such that the following properties hold:

Consistency preservation: The evolved metamodel is consistent, i. e. fulfills
the constraints defined by the meta-metamodel, if the original one was.

Conformance preservation: The migrated model conforms to the evolved
metamodel if the original model conformed to the original metamodel.

Note that both consistency and conformance thus have to hold only at trans-
action boundaries, i. e. the metamodel may be inconsistent or the model may
not conform to the metamodel during a transaction. Coupled transactions are
composeable by simply sequencing them. A comprehensive migration from one
metamodel version to the next can thus be composed of a number of manageable
coupled transactions. Each coupled transaction is modular, i. e. can be specified
independently of any other coupled transaction.

3.2 Expressiveness and Reuse through Coupled Transactions

Our study of the evolution of industrial metamodels [7] showed that the evolu-
tion of a language can, in principle, be split into individual coupled changes, each

6

denoting a specific metamodel adaptation and the corresponding model migra-
tion. Coupled transactions offer a formalism to specify such individual coupled
evolution operations. Furthermore, coupled transactions offer an apt way of sat-
isfying the central requirements identified in [7] for efficient tool support for
coupled evolution of metamodels and models:

Expressiveness: In order to cater for arbitrarily complex model migrations,
specification formalisms must be sufficiently expressive.

Reuse: A substantial amount of changes were not metamodel-specific and oc-
curred during the evolution of different metamodels. In order to avoid re-
peated specification of recurring changes, a reuse mechanism for coupled
changes is necessary.

In order to fulfill the stated requirements, we provide two kinds of cou-
pled transactions: reusable and custom coupled transactions. A reusable coupled
transaction allows to reuse recurring coupled evolution operations across meta-
models and has thus to be specified independently of a specific metamodel. We
can define a library of reusable coupled transactions which can be invoked by a
language developer, thus promising to significantly reduce effort associated with
metamodel adaptation and migration encoding. However, not every coupled evo-
lution can be decomposed of reusable coupled transactions available in a library.
For this reason, a custom coupled transaction can be manually defined by the
language developer for complex migrations which are specific to a metamodel.
Through the combination of arbitrarily expressive custom coupled transactions
and reusable coupled transactions, as is depicted in Figure 2, composeability
enables us to combine both expressiveness and reuse.

Version 0

Metamodel

Model

Version 1

ReusableCT1(…) RCT2(…) ReusableCT1(…)

ReusableCT1 ReusableCT2

Custom Coupled

Transaction

Fig. 2. Composability of coupled transactions

7

4 COPE

In this section, we present COPE, our language for the coupled evolution of
metamodels and models. COPE implements the concept of coupled transactions
and is based on the Eclipse Modeling Framework (EMF) [8]. In order to achieve
in-place transformation, COPE softens the conformance of a model to its cor-
responding metamodel during coupled evolution. Based on this decoupling of
metamodel and model, COPE provides a number of expressive primitives to
adapt the metamodel and to migrate the model independently of each other.
These primitives can be combined to encode custom and reusable coupled trans-
actions, which both require metamodel consistency and model conformance at
their boundaries.

4.1 Decoupling Metamodel and Model

Figure 3 depicts the relationship between a model and its metamodel. Inside
transactions boundaries, model and metamodel can be modified independently
of each other, whereas conformance is required at transaction boundaries. As a
consequence, we are able to perform an in-place transformation of the model,
i.e. the model is directly updated. In-place transformation is more efficient than
out-of-place transformation, which requires to rebuild the migrated model from
scratch.

As meta-metamodel, we use Ecore from the Eclipse Modeling Framework
(EMF) [8]. However, our approach is not restricted to Ecore, as it can be trans-
fered to all object-oriented metamodeling formalisms. A metamodel consists of
a number of packages (EPackage) in whose scope classes are defined (EClass).
A class may be abstract and may have a number of supertypes (eSuperTypes),
thus supporting multiple inheritance. Each class defines a number of features
(EStructuralFeature) which may be either attributes (EAttribute) or association
ends (EReference), and which have a type and multiplicity (lowerBound, upper-
Bound). Bidirectional associations are achieved by combining two association
ends through eOpposite. Whole-part associations are modeled by so-called con-
tainment references.

A model consists of a number of instances (Instance). Each instance has a
number of slots (Slot) which are the valuations of either attributes (AttributeSlot)
or association ends (ReferenceSlot). Instances and slots are associated to their
corresponding metamodel elements. However, these associations do not constrain
an instance to always conform to its type in the metamodel. This loose associ-
ation allows us to first modify the metamodel without affecting the model and
then migrating the model to the evolved metamodel. Since this decoupling can
lead to states where the model does not conform to its metamodel, conformance
is checked at transaction boundaries.

Consistency. The metamodel is consistent if it fulfills the constraints defined
by the Ecore meta-metamodel. Examples for constraints are that no two classes
may have matching names, or that a class may neither directly nor transitively

8

Metamodel EStructuralFeature

Model Instance Slot

values [*]: Object

AttributeSlotReferenceSlot

abstract: EBoolean

EClass

EAttribute

containment: EBool...

EReference

1 metamodel

*

instances

*

slots

*

eClassifiers

*

eStructuralFeatures

EClassifierEPackage

1 type

* values

* ePackages

1 eAttribute1 eReference

0..1

eOpposite

name: EString

ENamedElement

lowerBound: EInt

upperBound: EInt

ETypedElement
1

eType

*

eSuperTypes

M
e

ta
m

o
d

e
l
L

a
y
e

r
M

o
d

e
l
L

a
y
e

r

Fig. 3. Association between metamodel and model

be a supertype of itself. We refer the reader to the Java documentation of the
EMF source code for a complete list of the constraints4. EMF provides a facility
to easily check for the violation of these constraints which we employ in the
implementation of COPE.

Conformance. The loose association between metamodel and model may lead
to states where the model does not conform to its metamodel. However, we can
define what it means for a model to conform to its metamodel based on the
association between metamodel and model elements.

– A model conforms to its metamodel if each instance conforms to its type
which has to be a non-abstract class defined by the model’s metamodel.

– An instance conforms to its type if
• each slot conforms to its feature which is defined by the instance’s type

or its super types,
• for each mandatory5 feature defined by the instance’s type there is a

corresponding slot,
• either it is a root element of the model or it is referenced exactly once

by a containment reference slot of another instance, and
4 The source distribution of EMF can be downloaded from http://www.eclipse.org/

modeling/emf/.
5 A feature is mandatory if it is required to be set because of a non-zero lower bound.

9

• it fulfills all further constraints which are defined in the context of the
instance’s type or its super types.

– An attribute slot conforms to its attribute if the value of the slot is consistent
with the attribute’s type and multiplicity.

– A reference slot conforms to its reference if
• the value of the slot is consistent with the attribute’s type and multi-

plicity, and
• the instance belongs to the opposite reference slot of each value.

While on purpose not enforced by the loose association between metamodel
and model, these constraints can be checked at transaction boundaries.

4.2 Primitives for Metamodel Adaptation and Model Migration

COPE provides a number of expressive primitives to specify metamodel adap-
tation and to specify model migration. The primitives are complete in the sense
that every possible metamodel adaptation and every possible model migration
can be encoded.

Metamodel adaptation. For metamodel adaptation, COPE provides the following
primitives to query the metamodel:

– <qualifiedName> to access a metamodel element by means of its qualified
name, i.e. a package, class or feature.

– <element>.<featureName> to access the value of a feature of a metamodel
element as defined by the meta-metamodel.

COPE provides the following primitives to modify the metamodel that per-
form an in-place transformation:

– <package>.newClass(...), <class>.newAttribute(...) or <class>.

newReference(...) to create a new class, attribute or reference.
– <element>.delete() to delete a metamodel element.
– <element>.<featureName> = <value> to modify the value of a feature

of a metamodel element.

Model migration. For model migration, COPE provides the following primitives
to query a model:

– <class>.exactInstances to access all instances of a class.
– <class>.instances to access all instances of a class or any of its sub-

classes.
– <instance>.get(<feature>) or <instance>.<featureName> to ac-

cess the value of a feature of an instance (the short form can be used if
the feature with that name is available in the instance’s type).

COPE provides the following primitives to modify the model that perform
an in-place transformation:

10

– <class>.newInstance() to create a new instance of a class.
– <instance>.delete() to delete an instance from the model.
– <instance>.migrate(<class>) to change the type of an instance to a

different class.
– <instance>.set(<feature>, <value>) or <instance>.<featureName

> = <value> to modify the value of a feature of an instance (the short form
can be used if the feature with that name is available in the instance’s type).

– <instance>.unset(<feature>) to unset and return the value of a feature
of an instance.

These primitives are constructed in a way that they also allow to access
model information which currently does not conform to the metamodel.

4.3 Coupled Transactions

The primitives can be invoked from within the general-purpose scripting lan-
guage Groovy [19] in order to take advantage of its expressiveness. As a conse-
quence, we can rely on the Turing-completeness of the host language to be able
to describe complex coupled evolution operations. The interpreter of COPE en-
sures that a coupled transaction can only be successfully completed in case it
preserves consistency and conformance.

Signature

Port

inPort * * outPort

Signature

Port

inPort * * outPort

InPort OutPort

Signature

Port

* port

InPort OutPort

s:Signature

inPort outPort

p1:Port p2:Port

Metamodel Adaptation

Model Migration

s:Signature

inPort outPort

p1:InPort p2:OutPort

s:Signature

port port

p1:InPort p2:OutPort

Version 0 Version 0.1 Version 1

Fig. 4. Coupled evolution of example metamodel and model

Custom coupled transaction. Custom coupled transactions are coupled transac-
tions which are specific to a certain metamodel. A custom coupled transaction is
specified by the language developer as a script that uses a number of primitives
to specify both metamodel adaptation and model migration. Figure 4 depicts a

11

simple example metamodel and the two coupled changes we plan to perform6.
The metamodel allows to express Signatures of components which consist of input
and output Ports (references inPort and outPort). In version 0 of the metamodel,
a port does not by itself know whether it is an input or output port. In order
to introduce the missing information in version 0.1, we refine the class Port into
specialized subclasses InPort and OutPort and make it abstract. Instances of Port
have to be migrated according to the information whether they are input and
output ports of the signature. As there is not yet a reusable coupled transaction
for this coupled evolution, we have to manually encode both metamodel adap-
tation and model migration in a custom coupled transaction which is shown in
Listing 1.

Listing 1. Custom coupled transaction
// metamodel adaptation
Signature.inPort.eType = newClass("InPort", [Port])
Signature.outPort.eType = newClass("OutPort", [Port])
Port.’abstract’ = true

// model migration
for(signature in Signature.instances) {
for(port in signature.inPort) port.migrate(InPort)
for(port in signature.outPort) port.migrate(OutPort)

}

Reusable coupled transaction. We use the reuse mechanism of procedures of
the host language in order to declare reusable coupled transactions. Reusable
coupled transactions can be instantiated by simply invoking the corresponding
procedure. The applicability of a reusable coupled transaction can be restricted
by constraints in the form of assertions. Since we have introduced specialized
classes for input and output ports, we no longer need to distinguish them through
the references from Signature in version 1 of the metamodel (see Figure 4). We
can now merge the two references into a single reference which is performed by
means of an existing reusable coupled transaction from a library. The declaration
of the reusable coupled transaction that merges one reference into another, is
depicted in Listing 27. Listing 3 shows how to instantiate the reusable coupled
transaction in order to merge the references inPort and outPort into the reference
port created before.

6 For better overview, modified elements are highlighted by a dashed box.
7 The token −> is part of the Groovy syntax and separates the parameter list from

the body of a procedure.

12

Listing 2. Declaration of a reusable coupled transaction
merge = {EReference toMerge, EReference mergeTo −>
def contextClass = toMerge.eContainingClass
// constraints
assert contextClass.eAllStructuralFeatures.contains(mergeTo)
assert toMerge.many && mergeTo.many
assert toMerge.eReferenceType == mergeTo.eReferenceType | |
toMerge.eReferenceType.eAllSuperTypes.contains(toMerge.

eReferenceType)
// metamodel adaptation
toMerge.delete()
// model migration
for(instance in contextClass.allInstances) {
instance.get(mergeTo).addAll(instance.unset(toMerge))

}
}

Listing 3. Instantiation of reusable coupled transactions
Signature.newReference("port", Port, 0, −1, true)
merge(Signature.inPort, Signature.port)
merge(Signature.outPort, Signature.port)

5 Tool Support

On top of the language implementation, we developed further tool support to
ease the application of COPE. Figure 5 provides an overview of the tool workflow
using the example from Section 4.3. Reusable coupled transactions have to be
declared independently of the specific metamodel, i. e. on the level of the meta-
metamodel. Reusable coupled transactions can be registered to an explicit library
through which they are made available to the language developer. The library is
aware of the signature and the constraints of the reusable coupled transactions.
All changes performed on the metamodel are maintained in an explicit language
history. The history not only contains the metamodel adaptation, but also the
encoded model migration. The history is structured according to the major lan-
guage versions, i. e. when the language was deployed. All previous versions of the
metamodel can be easily reconstructed from the information available in the his-
tory. In Figure 5, version 1 consists of the coupled transactions we performed in
Section 4.3. A migrator can be generated from the language history that allows
for the batch migration of models. The migrator can be invoked to migrate a
model conforming to an earlier version of the metamodel to the newest version of
the metamodel. This activity is fully automated, i.e. no information is required
during migration.

In order to ease the application of COPE, we have integrated it to the meta-
model editor provided by EMF. A screenshot of the extended metamodel editor

13

Library of Reusable

Coupled Transactions

Language History Version 0

Metamodel

Adaptation

Model

Migration

Version 1

merge(…)

Instantation

Custom Coupled

Transaction

Old

Model

New

Model
Migrator

Output

conforms To conforms To

Generation

M
e

ta
-m

e
ta

m
o

d
e

l

le
v
e

l

M
e

ta
m

o
d

e
l

le
v
e

l

M
o

d
e

l

le
v
e

l

nR(…) merge(…)

newReference merge

Old

Meta-

model

New

Meta-

model

Instantation

Input

C
O

P
E

Fig. 5. Tool workflow

is shown in Figure 68. The hands-on user interface provides facilities to perform
the coupled evolution of metamodel and model. A reusable coupled transaction
can be invoked through the operation browser. The browser is context-sensitive,
i. e. offers only those reusable coupled transactions which are applicable to the
elements currently selected in the metamodel editor. The browser allows to set
the parameters of a reusable coupled transaction based on their type, and gives
feedback on its applicability based on the constraints. When a reusable coupled
transaction is executed, its invocation is tracked in the language history. Fig-
ure 6 shows the merge operation being available in the browser, and the executed
merge operations stored in the history. In case no reusable coupled transaction
is available for the coupled evolution at hand, the language developer can per-
form a custom coupled transaction. First, the metamodel is directly authored
in the EMF editor. The tool automatically tracks the metamodel changes in
the history. A migration can later be attached to the sequence of metamodel
changes by encoding it in the language presented in Section 4. Figure 6 shows
the model migration attached to the manual changes in a separate editor with
syntax highlighting. The browser provides a release button to create a major
version of the metamodel. After release, the language developer can initiate the
automatic generation of a migrator.

8 A demonstration of the capabilities of the tool is available at http://wwwbroy.in.

tum.de/~herrmama/cope/pmwiki.php?n=Demo.Main.

14

Metamodel

Language History

Custom

Coupled

Transaction

Reusable

Coupled

Transactions

Metamodel

Adaptation

Model

Migration

Fig. 6. Editor integration

6 Conclusion

Just as other software artifacts, modeling languages evolve. To allow for effi-
cient language evolution in practice, tool support must allow the specification
of both expressive and reusable metamodel adaptation and model migration op-
erations. In this paper, we have outlined a language that allows to compose a
comprehensive migration from one metamodel version to the next of modular,
coupled transactions. Expressiveness is provided by embedding the language into
a Turing-complete host language. Reuse is provided by an abstraction mechanism
that allows to encapsulate recurring migration knowledge. Composeability allows
to easily combine reusable coupled transactions with custom coupled transac-
tions, combining high migration development productivity and expressiveness.
We implemented versioning for the coupled evolution of metamodel and models,
and integrated the language implementation into the EMF metamodel editor.
We are currently planing to contribute the language implementation, the ver-
sioning mechanism and the editor integration to the Eclipse Modeling Project.

We intend to direct our future work on COPE in the following two directions:
Based on our analysis of the coupled evolution history of two industrial meta-
models [7], we plan to compile a library of reusable coupled transactions. We
intend to apply and evaluate it in the context of a case study from the automo-

15

tive domain. Furthermore, we plan to develop a static analysis that allows us to
verify conformance preservation of coupled transactions in a model-independent
way, as the current version can only validate conformance preservation after
transaction execution on a concrete model.

Moreover, we envision to employ our language for the iterative development
of modeling languages. A version of a modeling language is created and deployed
to be assessed by the modelers. The feedback of the modelers can then be easily
incorporated into a new version of the modeling language which is again deployed
for further assessment.

References

1. Kleppe, A., Warmer, J., Bast, W.: MDA Explained. The Model Driven Architec-
ture: Practice and Promise. Addison-Wesley (2003)

2. Greenfield, J., Short, K., Cook, S., Kent, S., Crupi, J.: Software Factories: Assem-
bling Applications with Patterns, Models, Frameworks, and Tools. Wiley (2004)

3. Sprinkle, J.: Model-integrated computing. IEEE Potentials (2004)
4. Favre, J.M.: Languages evolve too! changing the software time scale. In: IWPSE.

(2005)
5. Allen, E., Cartwright, R.: The case for run-time types in generic java. In: PP-

PJ/IRE. (2002)
6. Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., Jazayeri, M.:

Challenges in software evolution. In: IWPSE. (2005)
7. Herrmannsdoerfer, M., Benz, S., Juergens, E.: Automatability of coupled evolution

of metamodels and models in practice. In: MODELS. (2008) (to appear) http:

//wwwbroy.in.tum.de/~herrmama/cope/pmwiki.php?n=Publications.Main.
8. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling

Framework. Addison-Wesley Professional (2003)
9. Sprinkle, J.M.: Metamodel driven model migration. PhD thesis (2003)

10. Sprinkle, J., Karsai, G.: A domain-specific visual language for domain model
evolution. Journal of Visual Languages and Computing (2004)

11. Becker, S., Goldschmidt, T., Gruschko, B., Koziolek, H.: A process model and clas-
sification scheme for semi-automatic meta-model evolution. In: Workshop ’MDD,
SOA and IT-Management’. (2007)

12. Gruschko, B., Kolovos, D., Paige, R.: Towards synchronizing models with evolving
metamodels. In: CSMR. (2007)

13. Wachsmuth, G.: Metamodel adaptation and model co-adaptation. In: ECOOP.
(2007)

14. Lämmel, R.: Coupled Software Transformations (Extended Abstract). In: First
International Workshop on Software Evolution Transformations. (2004)

15. Banerjee, J., Kim, W., Kim, H.J., Korth, H.F.: Semantics and implementation of
schema evolution in object-oriented databases. In: SIGMOD. (1987)

16. Ferrandina, F., Meyer, T., Zicari, R., Ferran, G., Madec, J.: Schema and database
evolution in the O2 object database system. In: VLDB. (1995)

17. Claypool, K.T., Jin, J., Rundensteiner, E.A.: SERF: schema evolution through an
extensible, re-usable and flexible framework. In: CIKM. (1998)

18. Mens, T., Van Gorp, P.: A taxonomy of model transformation. In: GraMoT. (2005)
19. Koenig, D., Glover, A., King, P., Laforge, G., Skeet, J.: Groovy in Action. Manning

Publications Co. (2007)

