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Abstract. Through their high degree of specialization, domain specific
languages (DSLs) promise higher productivity and thus shorter develop-
ment time and lower costs than general purpose programming languages.
Since many domains are subject to continuous evolution, the associated
DSLs inevitably have to evolve too, to retain their value. However, the
continuous evolution of a DSL itself can be very expensive, since its
compiler as well as existing words (i. e. programs) have to be adapted
according to the changes to a DSL’s specification. These maintenance
costs compromise the expected reduction of development costs and thus
limit the success of domain specific languages in practice.
This paper proposes a concept and a tool for the evolutionary develop-
ment of domain specific languages. It provides language evolution oper-
ations that automate the adaptation of the compiler and existing DSL
programs according to changes to the DSL specification. This signifi-
cantly reduces the cost of DSL maintenance and paves the ground for
bottom-up development of domain specific languages.

1 Domain Specific Chances and Limitations

Albeit three decades of intense research and significant progress in research and
practice, the development and maintenance of software systems still constitutes
a time-consuming, costly and risky endeavor. The reduction of software devel-
opment and maintenance costs thus remains a research topic of paramount im-
portance to software engineering. A basic idea behind many approaches that
attempt to reduce these costs is to increase the productivity of software devel-
opers. One approach to raise productivity that has received increased attention
in recent years, are domain specific languages.

1.1 Productivity Through Specialization

A domain-specific language (DSL) is a programming language or executable
specification language that offers, through appropriate notations and abstrac-
tions, expressive power focused on, and usually restricted to, a particular prob-
lem domain [1]. Hence, the key characteristic of domain specific languages is
their specialization to a problem domain. This specialization allows them to of-
fer language constructs and abstractions tailored to the class of problems from



this domain. DSLs typically allow these problems to be described very directly
and concisely, requiring less developer effort than general purpose programming
languages. DSLs thus have the potential to increase productivity and decrease
costs of software development. Particularly prominent examples for the benefits
of DSLs are found in the compiler construction field with specialized languages
and generators (amongst others) for hashing (e. g. gperf), scanners, and parsers.
Tools for the interactive design of graphical user interfaces, the query language
SQL, interface definition languages like WSDL or modeling languages like MAT-
LAB/Simulink add further examples for the benefits of DSLs, i. e. purpose-built
languages with powerful generators.

Besides reduced development time and cost, DSLs are a promising mean
to decrease the maintenance cost of software because of the reduced code size
and increased comprehensibility, both due to the higher expressiveness of DSLs
compared to general-purpose languages. The decrease of maintenance costs is
particularly important since 60-80% of the costs of software are usually not
devoted to initial development but to maintenance [2–4].

However, DSLs only help to reduce overall maintenance costs, as long as
the costs for development and maintenance of the DSL itself can be amortized.
If unanticipated changes to a domain require changes to the DSL definition,
maintenance costs can be high, as noted in [5].

1.2 Limitations

Thus, the success of DSLs is clearly still limited to few niches. To the extent of
our own practical experiences and that of our commercial partners, the bulk of
code that gets written, be it information systems in financial institutions or flight
control systems for commercial aircrafts, makes little use of DSLs. Languages
like Risla for Financial Products [5] are rare exceptions to the rule.

We state that there are at least three major reasons for this which we will ex-
plain more precisely in the following paragraphs. First are the costs of designing
and implementing DSLs. Second, the limited capabilities of one-step generation
and third, the constant need to evolve DSLs.

The multi-level language evolution concept and tool-support presented in
this paper largely increases the applicability of DSLs by helping to overcome
exactly these three current core difficulties in DSL design and implementation.

2 Challenges in DSL Design and Maintenance

The goal of the concept and tool-set presented in this paper is to increase the
long-term applicability of DSLs by supporting an evolutionary and bottom-up
oriented style for DSL design and implementation. The rationale for this ap-
proach is the need to overcome three major obstacles that we detail in the
following paragraphs.



2.1 DSLs Are Expensive to Build

Though DSLs promise substantial gains in productivity, the development of
DSLs itself is expensive and troublesome. [6] summarizes the difficulties of build-
ing DSLs adequately as follows:

DSL development is hard, requiring both domain knowledge and lan-
guage development expertise. Few people have both. Not surprisingly,
the decision to develop a DSL is often postponed indefinitely, if con-
sidered at all, and most DSLs never get beyond the application library
stage.

Clearly, one of the primary contributions of DSLs is enabling reuse, i. e. reuse
of abstractions and reuse of the knowledge about how to implement these ab-
straction in different contexts. As such, DSLs must cope with the same economic
challenges like any other reuse oriented approach [7]. Building reusable compo-
nents requires a costly analysis of the domain and its variability followed by
an even more expensive implementation of reusable components1. The costs of
planning and building such generalized components are usually a multiple of the
costs of building a concrete solution to a particular problem [7]. Hence, building
DSLs only pays-off after repeated successful use of the DSL. However, due to the
constant change of requirements and the execution environment [8], the future
use of a DSL is uncertain and building DSLs is economically risky. Note, that
this risk increases with the degree of specialization respectively the potential
benefit.

Requirement 1 (Stepwise Bottom-Up Generalization)
To reduce the uncertainty of the benefit of DSL design and implementation, DSLs
should be built in an incremental and bottom-up oriented manner instead of the
currently predominant top-down and big-bang like approach. To support this style
of DSL development, means for the step-wise generalization of existing concepts
and solutions as needed are required.

If DSLs can be built by gradually abstracting and flexibilizing existing so-
lutions (including DSLs) as needed, then the cost of building a DSL will never
significantly exceed the costs of developing the desired new solution from scratch,
but often provide immediate pay-offs. No effort has to be put into speculation
about future requirements and there is no need for risky in advance investment
into flexibility that could possibly be needed in the future.

2.2 Generators are no Oracles

A DSL usually requires a generator that reads a word2 of the domain specific
language and produces a word in the desired target language. Program gen-
erators for DSLs are nothing but program transformation systems providing a
1 In case of DSLs represented through the domain language and a code generator.
2 The term word is used as in formal language theory to denote strings that conform

to the language syntax.



A S L2L1

Generator G

Fig. 1. Generator basics

translation from a higher to a lower level language, (also called synthesis or
compilation). Hence, program generators are subject to the same inherent lim-
itations as conventional compilers that translate from C to Assembler or Java
to Byte-code, though program generators usually operate on a higher level of
abstraction.

Figure 1 illustrates the basic structure of a program generator G. G reads
words v ∈ L1 and produces words w ∈ L2 by first performing an analysis A
of v and then synthesizing (S) result w. The whole benefit of this strategy
corresponds to the distance between the level of abstractions of the input and
the output languages, denoted by A(L1) and A(L2). Basically3, there are three
different possibilities:

A(L1) = A(L2): The DSL L1 and its generator G are useless from a productivity
perspective. G does not contribute any decisions to the implementation. All
details of the output w are already specified in the input v. G only rephrases
v which might increase readability of v compared to w but not reduce its
complexity.

A(L1) > A(L2): This means that some details of w are not described in v but
G decides on the implementation of these details. Examples are the allo-
cation of memory for local variables in C compilers or the optimization of
an SQL query. Here, the gains for the user of L1 are obvious. By leaving
some decisions on how to implement w up to G, v becomes shorter and more
declarative, by describing G what to implement.

A(L1) >> A(L2): Unfortunately, the possibility to stretch the distance between
A(L1) and A(L2) is very limited because of computational complexity. Even
basic decisions, like the allocation of registers, turn out to be NP-hard [9]. It
is our conviction, that mapping higher level descriptions such as a financial
service specification to Java classes and objects efficiently will have to cope
with similar complexity issues. Usually this complexity is circumvented by
accepting suboptimal decisions and thereby reduces quality of the output.
The wider the gap between A(L1) and A(L2) gets, the less information will
be available to the decision maker G resulting in a weaker result w in terms
of performance, reliability, usability and so on. Clearly, reduced quality is
counterproductive for reuse. McIlroy stated in 1968 “No user of a particu-
lar member of a family should pay a penalty in unwanted generality” [10].
E. g. current Object-Relational mapping tools suffer from this trade-off.

This leads to the following contradictory observation:
3 Ignoring reverse engineering, since it cannot increase productivity, where A(L1) <

A(L2)



1. The benefit that can be gained from a single generator is inherently and
severely limited. We are convinced that there will not be a single flexible
DSL for some high-level business domain with a generator that maps it to
high-quality Java code.

2. To gain a significant advantage from a DSL, the gap between the level of
abstractions of the input and the output has to be wide (see A(L1) > A(L2)).

The concept and tool-set presented in this paper aims at solving this concept
by fulfilling the following requirement.

Requirement 2 (DSL Layering)
The design and implementation of a DSL should not be limited to a one-step
compilation but support layers of DSLs and a staged generation process with
additional user input at each stage.

Note, that staging further increases the complexity and costs of building and
maintaining the DSL as discussed in 2.1 because changes on one stage might
affect other stages, too. Again, ruling this complexity requires a tool-set that
aids in gradually adapting the DSL hierarchy as needed (see requirement 1).

2.3 Language and Word Evolution

While building a DSL is costly, building layered DSLs is even more expensive
and maintaining a single or even layered DSL is even worse because nothing is
more constant than change entailing a constant need for evolution [8].

The design and implementation of a DSL trivially depends on the require-
ments of the domain. With the exception of DSLs that model a technical domain,
such as regular expressions or SQL, the requirements are directly connected with
the business processes in this domain. Unfortunately, business processes are very
volatile [11], simply because business process agility is the mean to achieve com-
petitive advantages.

This poses a serious difficulty for DSLs. On the one hand, a DSL should be
high-level or in other words as close to the business processes as possible in order
to provide increased productivity compared to a general purpose language. On
the other hand, the tighter the DSL is connected with the business processes,
the more fragile it gets and the more often it will have to be changed, which in
turn reduces the benefits of possible reuse.

A non-trivial change to an existing DSL L leading to a new DSL version L′

requires the following three major steps:

1. Change of the definition of L – its syntax and semantics.
2. Adaption of all tools processing L; at least the corresponding compiler or

generator but possibly also syntax aware editors (e. g. highlighting), debug-
ger, etc.

3. Transformation of all already existing words (programs) w ∈ L into language
L′.



As an alternative to step 3, one could also maintain older versions of DSLs so
that words in older versions of the language could still be used and changed
independently of newer versions of the language. However, this would create a
complicated configuration management problem and in addition to this, users of
older versions of the language could not benefit from any advantages of newer
versions and new tools. In practice, this drawbacks forces users to migrate their
words to the new version.

Hence, most DSLs will have to evolve over time, including the tools that
process these DSLs and words written in these languages. Without adequate
tool-support, DSL evolution is a complex, time-consuming, and error-prone task
that severely hampers the long-term success of a DSL.

Requirement 3 (Automated Co-Evolution) DSL maintenance is inevitable
for most realistic domains and requires adequate tool support. The transformation
of existing words and the adaptation of language processing tools according to
changes of the language has to be automated as far as possible.

Note that this requirement complements requirement 1 because the tool-
supported co-evolution of language, tools and words is a contribution to stepwise
bottom-up generalization as formulated in requirement 1.

3 Related Work

The work presented in this paper combines DSLs [1] and generative programming
[12] with elements of program transformation [13] and compiler construction, as
well as software evolution [8]. Within this general context, the evolution con-
cept has strong relations with Grammar Engineering and language evolution as
described in the following paragraphs.

3.1 Grammar Engineering

In [14], Klint, Lämmel and Verhoef argue that although grammars and related
formalisms play a pervasive role in software systems, their engineering is insuffi-
ciently understood. They propose an agenda that is meant to promote research
on Grammarware and state research challenges that need to be addressed in
order to improve the development of grammars and dependent software.

One of these challenges is the development of a framework for grammar trans-
formations and the co-evolution of grammar-dependent software. The Grammar
Evolution Language proposed in this paper offers such grammar transforma-
tion operations, and the automatic generation of compilers from DSL definitions
with static validation of path expressions aims at the desired co-evolution of one
important instance of grammar-dependent software, namely the compiler.

In [15], Lämmel proposes a comprehensive suite of grammar transformation
operations for the incremental adaptation of context free grammars. The pro-
posed operations are based on sound, formal preservation properties that allow



to reason about the relationship between grammars before and after transforma-
tion. [16] and [17] present systems that implemented these evolution operations
to incrementally transform LLL and SDF grammars.

Lämmel’s grammar adaptation operations inspired the design of the Gram-
mar Evolution Language used in our approach as a mean to automate language
evolution. However, this paper focuses primarily on the coupled evolution of
grammars and words of the language described by these grammars. Compared
to the operations suggested by Lämmel, the Grammar Evolution Language sacri-
fices the formal basis to allow for simpler coupled evolution operations. It would
be desirable to combine the coupled evolution capabilities proposed in this paper
with the formal preservation properties proposed by Lämmel in future versions
of our tool Lever.

3.2 Evolution of Language Specifications

TransformGen is a system that generates converters that adapt programs ac-
cording to changes of the language specification [18, 19]. While TransformGen
automatically produces converters for local4 changes, non-local transformations
must be specified manually. Furthermore, non-local transformations cannot be
reused between recurring evolution operations.

TransformGen only targets the adaptation of words but does not take lan-
guage processing tools into account. The tool Lever presented in this paper goes
one step further by semi-automating the adaptation of compilers, too. Moreover,
Lever supports reuse of coupled transformations.

3.3 Schema Evolution in Object Oriented Databases

Regarding a data base schema as a language and the information contained in a
data base as the words of this language allows to relate schema evolution with
program transformation. Co-evolution of language and words is of predominant
importance to this field and studied in various works.

In [20], Banerjee proposes a methodology for the development of schema
evolution frameworks for object oriented databases (OODB) that was used in
the ORION OODB system. The methodology suggests invariants for consis-
tent database schemas and evolution primitives for incremental changes to the
database. The evolution primitives perform coupled updates of both the schema
and the objects in the database. Similar schema invariants and update primi-
tives were proposed in [21] for GemStone OODB. The DSL Dictionary invariants
that we use in our approach were inspired by these ideas. In [22], Ferrandina de-
scribes the schema evolution approach used in the O2 OODB. In contrast to the
coupled evolution primitives of ORION, it performs schema and data updates
separately. While a declarative language is used for schema updates, migration
of objects to new schema versions is based on user-defined conversion functions.
Through this separation, O2 is able to support global evolution operations. The
4 Local transformations are restricted to the boundary of a grammar production.



approach presented in this paper extends this idea by separating grammar and
word evolution language without requiring user-defined functions in a general
purpose language.

The SERF schema evolution framework [23] uses OQL for schema and data
manipulations and transformation templates, in order to provide extensible, cou-
pled evolution operations. The transformation templates combine the advantages
of the above mentioned approaches, by allowing both local and global transfor-
mations to be specified using expressive, coupled evolution operations affecting
both schema and data objects. These transformation templates stimulated the
use of Jython procedures to form language evolution statements by coupling
grammar and word evolution language statements in the approach presented
here.

4 Language Evolution Concept

The core concepts of the proposed approach to construct multi-level DSLs (see
4.1) incrementally are grammar, word, and language evolution languages (4.3),
and a generator architecture that is built around DSL histories (4.4).

4.1 Divide and Conquer

According to requirement 2 of section 2, layering DSLs is a key design principle
for building powerful DSLs that map high level specifications to their implemen-
tation. Figure 2 illustrates the difference between one-step generation and the
layering proposed in this paper.

G1

G2

G3

t

i1

i2

i3

G1

G2
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t

G

I = I1 ° I2 ° I3 ° I4

Fig. 2. Staged versus one-step generation

On a theoretical level, staging the compilation process as shown on the left
into three generators G1, G2, and G3 that produce the output t in a sequence,



seems identical with one-step generation of a composed generator G as shown
on the right hand side; with the technical exception that inputs i1, i2 and i3 are
not fed into the generation process at once but at the beginning of each stage.
In fact, the concatenation of the various inputs i = i1 ◦ i2 ◦ i3 could be regarded
as a word of the language I that results from concatenating the input languages
I1, I2, and I3.

However, there are strong differences between the staged or the one-step
generation model when it comes to the implementation of the DSL. Note, that
not only the input fragments i2 and i3 depend on i1 respectively i2 ◦ i1 but
also every language In depends on all inputs previous to stage n. Technically
speaking, In corresponds with the information needed by Gn to further drive with
the generation process in the situation created by i0, . . . , in1 . Now, specifying the
unified language I of all possible input sequences would theoretically be possible
but technically impractical. It would yield a undesirable DSL with numerous
semantical conditions and exceptions allowing and restricting the use of language
elements within a word of the language depending on arbitrary prefixes of the
word.

In addition to the improved structuring of DSL, the staged model also indi-
cates a feasible way of implementing complex generation process by dividing the
task into separate steps with individual inputs at those points where it is needed.
Though this might seem surprising for DSL design and implementation, this is
exactly the strategy that system level software uses successfully to map high-
level applications to system-level representations for execution. E. g. the C++
source code i1 gets compiled with the C++ compiler G1. The link-loader G2

further sets the memory layout according to whether the user wants to execute
the code as a stand-alone application or a shared library as specified in i2. The
operating system kernel G3 then maps the results of these steps to main memory
pages, CPU cycles, and so on according to the priorities of the user (i3). Imagine
the same process without staging. It would surely be possible but either hard to
comprehend or less flexible.

4.2 Generator Maintenance By Transformation

Maintaining such a sequence of dependent generators is highly complex by itself
and only practical with adequate tool-support. For example, if the top level DSL
I1 must be changed to accommodate a new feature, there is a high probability
that the output of G1 changes too, entailing the need for changing I2, G2, and
so on. All of these changes of languages (In) and programs (Gn) can themselves
be treated as language and program transformations. Hence, the evident tool to
maintain a staged DSL is itself a DSL for the domain of DSL manipulation.

The crucial element of this overall architecture is the top-level language evo-
lution language and the meta-level generator H. Our tool called Lever5 presented
in section 5 implements significant parts of such a meta-level generator based
on grammar and word evolution languages.

5 Language evolver.



4.3 Language Evolution Operations

The three proposed evolution languages for the manipulation of DSL specifica-
tions are displayed in Figure 3.

DSL
Specification

Syntax
Tree

instance- of

Grammar
Evolution
Language

Word
Evolution
Language

Language
Evolution
Language

Fig. 3. Evolution languages

Grammar Evolution Language (GEL) transforms the syntax and static and
translational semantics of a DSL. GEL operations can be used for both
creating the initial version as well as modifying it in order to yield subsequent
versions of a DSL.
The GEL is complete in the sense that its statements can be used to trans-
form any DSL syntax (and semantics) into any other DSL syntax (and se-
mantics).

Word Evolution Language (WEL) statements work on the syntax trees of
DSL words. During language evolution, they are used to perform syntax
tree transformations to compensate changes of the underlying grammar.
WEL is complete in the sense that its statements can be used to transform
any syntax tree into any other syntax tree and thus to compensate arbitrary
changes to the DSL specification.

From the point of view of expressiveness, the combination of these two evolu-
tion languages allows the specification of all possible transformations that might
arise during the evolutionary development of a DSL.

However, from the point of view of usability, a third evolution language is
desirable: the grammar and word evolution languages merely provide a low level
of abstraction. Even simple coupled evolution operations, such as renaming a
keyword in the syntax and all existing words, require at least two evolution op-
erations – one from each language. Furthermore, coupled transformation knowl-
edge cannot be reused to simplify recurring evolution operations. This gap is
filled by the third evolution language.



Language Evolution Language (LEL) statements perform coupled evolution
of both the grammar and the syntax tree. They provide a higher level of ab-
straction to users and enable reuse of coupled transformation knowledge.
LEL builds on the GEL and WEL to implement its transformations.

LEL can be conceived as a procedure mechanism that uses GEL and WEL
statements in the bodies of LEL procedures.

4.4 Evolution Architecture

Figure 4 shows the central components of the architecture of our language evo-
lution tool Lever.

All evolution operations applied during the construction and evolution of a
DSL are stored in the DSL History. The DSL History thus contains transforma-
tion information that specifies the delta between consecutive versions of a DSL.
This transformation information is used to automatically adapt both the DSL
compiler and existing DSL words to conform to the latest language version.

Lever

DSL
History

DSL
Word

instantiation

parsing

DSL
Specification

Syntax
Tree

semantic
processing

Target
Code

generation

instance- of

Fig. 4. Lever architecture

DSL History contains evolution operations that define specifications for all
versions of a DSL: The first evolution operations create the DSL specification
for the initial version of a DSL. Subsequent evolution operations transform
the DSL specification to yield later DSL versions.

DSL Specification is a comprehensive, declarative specification of the syntax
and static and translational semantics of a single version of the DSL. It is
explicitly available at runtime and drives the compilation process.

Syntax Tree is the in-memory representation of DSL words. It is an abstract
syntax tree that is decorated with concrete syntax and semantic attributes.



DSL Word is the input for the compilation process. DSL words are versioned
to allow the identification of the DSL version in which the word was written.

Target Code is the result of the compilation process.

Compiling Words of Arbitrary Versions The information contained in the
DSL history allows to translate DSL words written in any version of the DSL.
During the compilation process, the following steps are performed:

1. Identification of the DSL word’s language version.
2. Execution of the evolution operations from the DSL history in order to create

a DSL specification in the corresponding language version.
3. Generation of a parser from the information in the DSL specification. The

parser is then used to instantiate the syntax tree from the DSL word.
4. Transformation of DSL specification and syntax tree to the latest language

version. Versions of the DSL dictionary and the syntax tree are compared
with this latest DSL version. If needed, the DSL history is used to transform
both the DSL specification and the syntax tree to the latest version.

5. Semantic processing: according to the DSL semantics contained in the DSL
specification, target code for the syntax tree is computed and written to the
output.

5 Implementation: Lever

The proposed evolution operations and evolution architecture is implemented
prototypically in our tool Lever. Lever is implemented in Java. Evolution lan-
guages are implemented as internal DSLs in Jython [24], the Scannerless Gener-
alized LR parser (SGLR) [25] is used for parsing and the velocity template engine
is used for code generation.

5.1 DSL Specification Formalism

Lever uses an object oriented interpretation of attribute grammars6[26] as speci-
fication formalism for both syntax and semantics of a DSL. In Lever, DSL speci-
fications are called DSL Dictionaries, since they define the syntax and semantics
of every word a language comprises.

In DSL dictionaries, semantic rules specify how target code gets generated
from the data contained in the syntax tree. In order to cleanly separate target
code fragments, code generation logic and syntax tree access from one another,
DSL dictionaries use code generation templates as semantic rules. Access to the
syntax tree from within code generation templates runs via XPath [27] expres-
sions.

Every access to the syntax tree from within a semantic rule introduces a de-
pendency between the rule and the syntax tree. Language evolution operations
6 Context free grammars extended with semantic attributes and rules for their com-

putation.



may change the shape of the syntax tree and thus potentially break these de-
pendencies. In order to support DSL architects, Lever can statically validate all
XPath expressions against the DSL dictionary and thus detect broken depen-
dencies during language evolution.

5.2 Evolution Operations in Lever

The Grammar Evolution Language (GEL) comprises statements to declare non-
terminals, to create, rename and delete productions, to add, modify and remove
(literal, terminal or nonterminal) production components and (inherited or syn-
thesized) attribute declarations, to set semantic rules, to change the order of
production components and to influence priorities and associativity of produc-
tions. Every GEL statement operates on a single DSL Dictionary element.

The Word Evolution Language (WEL) comprises statements that use XPath
expressions to select, insert, update and remove nodes from the syntax tree. Fur-
thermore, it contains statements to declaratively construct syntax tree fragments
and change the dictionary element a syntax tree node instantiates.

The Language Evolution Language (LEL) comprises statements for recurring
coupled evolution operations, such as the introduction or removal of literal or
terminal symbols, the encapsulation or in-lining of production components or
the renaming of productions or literals (i.e. keywords).

5.3 Limitations

The current version of Lever only automates the adaptation of the DSL compiler.
Additional tools, such as a debugger, pretty printer or syntax aware editor still
have to be maintained manually.

Furthermore, Lever currently only targets textual DSLs. However, it is our
conviction, that the stated problems also hold for visual DSLs and we believe
that the concepts this paper proposes can also be applied to them.

6 Case Study: Catalog Description Language

As a proof of concept, Lever was applied to develop a specification language for
product catalog management systems in an evolutionary way. The results show
the feasibility of the proposed approach to DSL development.

Due to space constraints, this case study only demonstrates language evolu-
tion in a single stage scenario. On a conceptual level, this can be justified, since
the conceptual distance between the DSL and the target code framework is small
enough to allow for generation of high-quality Java code.

6.1 Domain

Product catalogs are collections of structured product documents. Each docu-
ment belongs to a product family. Typically, all documents within a product



family share the same structure, whereas different families have different docu-
ment structures.

Catalog management systems are used to create, manage and publish product
catalogs. This comprises the creation, manipulation and deletion of documents
by users, and the persistence and export of catalog data to different media.
Catalog management systems are data-centric. Thus, solution domain artifacts
that implement editors, display forms, persistence and data export depend on
the structure of the documents the implemented catalog comprises. Implement-
ing each artifact by hand—for every single document structure contained in a
catalog—is tedious, error prone and costly.

The goal of the Catalog Description Language (CDL) is to provide a declar-
ative specification language for product catalogs, from which these structure-
dependent artifacts can be generated. This increases the level of abstraction of
catalog management system development, by using generation to replace stereo-
type implementation activities.

Target System The Catalog management systems generated from CDL speci-
fications comprise two types of code: generic framework code, which implements
functionality common to all catalog management systems, and catalog specific
code, which gets generated from CDL specifications.

As suggested by the Generation Gap pattern [28], inheritance is used to
separate generic framework code (which resides in base classes) from catalog
specific, generated code (which resides in generated subclasses).

Fig. 5. Framework architecture



The catalog management systems use a simple Model View Controller [29]
architecture (compare Figure 5): A central Model stores all documents of a cat-
alog. DocumentViewers (that serve both as viewers and controllers) are used to
display and edit documents. Common functionality resides in the abstract base
classes Document, Display and Editor in the framework package.

The document structure specific code resides in classes in the generated pack-
age, which derive from the abstract base classes. For each document family spec-
ified in a CDL document, a document class, a display class and an editor class
are generated.7

Figure 6 shows the different conceptual layers of the catalog management
system ordered by their level of abstraction. The higher an artifact appears in
the figure, the higher its specialization and potential fitness to solve a domain
problem and thus the lower its reusability to other problems in the domain.
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Fig. 6. CDL stack

7 The current version uses serialization as a generic persistence mechanism and does
not support data export. In a future version, persistence and export code will also
be generated from document structure specifications.



Initial Language Version Listing 1.1 shows an exemplary specification8 for
a tool catalog written in the initial version of CDL. The file specifies document
structures for two product families: Wrenches consist of a single multi-line text
field Description, whereas Drills comprise one single-line text field Headline and
two multi-line text fields Description and Shipment. The captions depict field
labels displayed in editor forms.

Due to space constraints, the complete specification of CDL and the evolution
operations applied during its evolution have been omitted. Refer to [30] and [31]
for a complete reference of the implementation and evolution of CDL.

1 vers ion 1
2 Wrench {
3 mul t i l i n e Descr ipt caption ” Desc r ip t i on ” ;
4 }

6 Dr i l l {
7 s i n g l e l i n e Headl ine caption ”Family ” ;
8 mul t i l i n e Descr ipt caption ” Desc r ip t i on ” ;
9 mul t i l i n e Shipment caption ”Shipment In fo ” ;

10 }

Listing 1.1. CDL file in version 1

6.2 Evolving the Language

As is typical for incremental development, the first language version only com-
prises a small set of core language elements. Instead of designing the complete
language up-front, we will grow it in small steps. This saves us from the effort
and cost of performing a domain and variability analysis for our DSL. Further-
more, as we employ the first version of CDL to create catalog specifications, our
understanding of the domain grows and we get feedback on our language design.
Based on this feedback, we can make founded decisions on how to evolve the
language.

In the following, we present two exemplary evolution steps: A relatively sim-
ple transformation that changes the concrete syntax, and a more complex trans-
formation that restructures the language in a non-local way.

Local transformation As a first change, we decide to make the concrete syntax
of CDL more expressive, by adding the keywords catalog, document and field
and encapsulating the documents of a catalog in curly braces. Since this change
only affects the concrete syntax of our language and leaves its abstract syntax
unchanged, no semantic rules have to be updated.

Listing 1.2 depicts the required evolution operations. Line 2 contains a Lan-
guage Evolution Language statement that inserts the keyword catalog into the
8 simplified due to space constraints



production Cat in the DSL Dictionary. lbl is the label of the new catalog key-
word, docs is the label of the dictionary element before which the new keyword
gets inserted. 9 The statements in lines 3-10 behave accordingly for the braces
and remaining keywords.

These evolution statements offer a high level of abstraction to the DSL devel-
oper, since they transform both the DSL Dictionary and the syntax tree. Listing
1.3 shows the CDL file after transformation. The new keywords introduced by
the evolution operations are depicted in bold font.

1 # Add ca t a l o g keyword and b ra c k e t s
2 insert l i t before ( ” l b l ” , ” ca ta l og ” , ”docs ” , ”Cat” ) ;
3 insert l it behind ( ”open” , ”{” , ” l a b e l ” , ”Cat” ) ;
4 insert l it behind ( ” c l o s e ” , ”}” , ”docs ” , ”Cat” ) ;

6 #Add document keyword
7 insert l i t before ( ” l a b e l ” , ”doc” , ”name” , ”Doc” ) ;

9 #Add f i e l d keyword
10 insert l it behind ( ” l a b e l ” , ” f l d ” , ” type” , ” F i e ld ” ) ;

Listing 1.2. Evolution operations for version 2

1 vers ion 2
2 ca ta l o g {
3 document Wrench {
4 mul t i l i n e f i e l d Descr ipt caption ” Desc r ip t i on ” ;
5 }

7 document Dr i l l {
8 s i n g l e l i n e f i e l d Headl ine caption ”Family ” ;
9 mul t i l i n e f i e l d Descr ipt caption ” Desc r ip t i on ” ;

10 mul t i l i n e f i e l d Shipment caption ”Shipment In fo ” ;
11 }
12 }

Listing 1.3. CDL file in version 2: local change of concrete syntax

Non-local transformation At this stage of development, we receive the re-
quirement that a catalog management system must support users that speak
different languages. As a consequence, catalog descriptions must be extended to
support field labels in multiple languages. We decide to extract the field captions
from the field definitions in order to preserve readability in the presence of many
languages.
9 In Lever, every part of a DSL Dictionary is labeled—language evolution operations

can thus refer to the DSL Dictionary elements they work on by their names.



Listing 1.4 shows the CDL file after transformation. Lines 11-19 have been
created by the evolution operations. Now that the labels have been extracted into
a captions region, further captions regions can be added for additional languages.

This evolution scenario is an example for a non-local restructuring. It cannot
be specified completely using high-level Language Evolution Language State-
ments alone. Rather, statements from the low level grammar and word evolution
languages have been used to perform this evolution step. 10

1 vers ion 3
2 ca ta log {
3 document Wrench {
4 mul t i l i n e f i e l d Descr ipt ;
5 }

7 document Dr i l l {
8 s i n g l e l i n e f i e l d Headl ine ;
9 mul t i l i n e f i e l d Descr ipt ;

10 mul t i l i n e f i e l d Shipment ;
11 }

13 capt ions english {
14 Wrench {
15 Descript ”Description”;
16 }

18 Dril l {
19 Headline ”Family”;
20 Descript ”Description”;
21 Shipment ”Shipment Info ”;
22 }
23 }
24 }

Listing 1.4. CDL file in version 3: non-local restructuring

7 Conclusion

DSLs are a promising approach to increase the productivity of software develop-
ment through raising the level of abstraction and providing powerful generative
techniques. However, DSLs are expensive to build and even more expensive to
maintain. The concepts and implementation techniques presented in this paper
allow a new style of DSL development and maintenance by incremental step-wise
evolution. This strategy renders the critical task of domain analysis less time-
consuming and critical and significantly reduces the costs of changing a DSL
by

1. automatically transforming all existing words in previous versions of the DSL
and

10 The evolution script comprises about 20 evolution operations and has been left out
of this paper for brevity.



2. providing prototypical tool-support for the adaptation of the DSL compiler.

As shown with the exemplary product catalog description language, DSL archi-
tects are enabled to introduce flexibility into the DSL as needed at any time. The
key to this flexibility is the transformation tool Lever (language evolver) that it-
self implements a powerful DSL for grammar, word, and coupled transformation
for the consistent manipulation of DSLs.

As shown in this paper, a tool like Lever contributes to the construction of
more powerful DSLs that span several levels of abstractions because this can
only be done realistically by structuring the compilation process into a sequence
of generation steps with a corresponding set of DSLs. Building and maintaining
such a sequence of DSLs without tool supported and coupled transformation of
grammars and words seems highly impractical.

Clearly, this work leaves room for interesting future work. One open question
is how to further automate the adaption of the compiler and other language
processing tools according to chances of the language. Another question that we
will further investigate in the future is the actual construction of realistically
applicable multi-level DSLs with the tool Lever implemented as part of the work
presented in this paper.
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16. Lämmel, R., Wachsmuth, G.: Transformation of SDF syntax definitions in the
ASF+SDF Meta-Environment. In: Proc. of the 1st Workshop on Language De-
scriptions, Tools and Applications (LDTA’01), publisher =. (April 2001)
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