
LDTA 2006 Preliminary Version

The Language Evolver Lever
— Tool Demonstration —

Elmar Juergens 1,2 Markus Pizka 1

Institut für Informatik, Technische Universität München
Boltzmanstr. 3, 85748 Garching, Germany

Abstract

Since many domains are constantly evolving, the associated domain specific lan-
guages (DSL) inevitably have to evolve too, to retain their value. But the evolution
of a DSL can be very expensive, since existing words of the language (i. e. programs)
and tools have to be adapted according to the changes of the DSL itself. In such
cases, these costs seriously limit the adoption of DSLs.

This paper presents Lever, a tool for the evolutionary development of DSLs. Lever
aims at making evolutionary changes to a DSL much cheaper by automating the
adaptation of the DSL parser as well as existing words and providing additional
support for the correct adaptation of existing tools (e. g. program generators). This
way, Lever simplifies DSL maintenance and paves the ground for bottom-up DSL
development.

Key words: domain specific languages, bottom- up language
development, language evolution, coupled transformation

1 Introduction

Just as other software artifacts, languages need to evolve as the environments
in which they are employed change.

This is especially apparent for domain specific languages (DSLs), since
they are usually tightly bound to a domain.

Whenever its domain evolves, a DSL must be adapted in order to reflect
these changes. Evolving a DSL requires three main steps:

• evolution of the language syntax

• migration of existing words (i. e. programs) to conform to the new grammar

1 Email: {juergens, pizka}@in.tum.de
2 Thanks to Jurgen Vinju for plentiful advice on SDF/SGLR, Ralf Lämmel for valuable
discussion on Grammar Adaptation and Jonathan Streit for helpful comments on this paper.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Juergens and Pizka

• adaptation of language processing tools (i. e. parser, generator)

In traditional approaches to implement DSLs, the evolution capabilities are
limited, since all three evolution steps usually have to be performed manually.
Transformers that migrate existing words must be written and parsers and
generators must be adapted by hand. Costs for doing this in an ad-hoc manner
every time a DSL evolves are high and thus seriously inhibit evolution.

This paper explains our solution to the evolutionary development of DSLs
which we call Lever (Language Evolver). Lever provides itself a domain specific
language for DSL creation and evolution. It automates the adaptation of a
DSL’s syntax, parser and existing words. Furthermore, it supports the manual
adaptation of the DSL generator by indicating those generator parts that are
affected by the language evolution operations performed.

Related Work

A tool having a strong relation to Lever is TransformGen [1,5]. It simplifies
the migration of existing words, but provides only limited support for coupled
evolution and does not support the adaptation of parsers or generators.

The grammar evolution part of Lever was inspired by the work of Ralf
Lämmel on Grammar Adaptation [3,4] but heads into a different direction by
considering coupled evolution operations on words and their grammars.

2 Overview of Language Evolution with Lever

2.1 Grammar Evolution

Lever uses labeled context free grammars for the specification of the syntax
of a language. A labeled context free grammar extends canonical context free
grammars with unique labels for productions and production symbols. These
labels are later on used in path expressions that navigate through labeled
context free grammars to select grammar elements.

Grammars in Lever are mutable. Lever provides a Grammar Evolution
Language that is used to create and modify grammar elements. The Grammar
Evolution Language comprises a set of evolution operations that is complete
in the sense that every grammar can be turned into any other grammar by
applying a sequence of Grammar Evolution Language statements.

2.2 Word Evolution

Lever internally represents words as labeled derivation trees: The production
labels name the nodes and the production symbol labels name the edges in
the tree. Thus, the same path expressions that select grammar elements from
the labeled context free grammar can be used to select corresponding nodes
from the labeled derivation tree. This turns path expressions into a uniform

2



Juergens and Pizka

querying mechanism for both labeled context free grammars and derivation
trees.

Labeled derivation trees are also mutable. Dual to the Grammar Evolution
Language, Lever provides a Word Evolution Language that is used to perform
evolution operations on the derivation trees. The Word Evolution Language
comprises a set of evolution operations that is complete in the sense that
every derivation tree can be turned into any other derivation tree by applying
a sequence of Word Evolution Language statements.

2.3 Coupled Evolution of Grammar and Words

While the grammar and word evolution languages are expressive, their level
of abstraction is still relatively low, since they target grammar and word evo-
lution separately.

Various frequently used evolution operations can be done more comfortably
using higher level coupled evolution operations that are automatically mapped
onto corresponding grammar and word evolution operations. Examples for
such higher level commands are renaming of terminals or the introduction of
new nonterminals with a default value. Lever provides an integrated Language
Evolution Language to facilitate such coupled evolution operations. It builds
on the Grammar- and Word Evolution Languages to implement these coupled
evolution commands. When working with Lever, users mainly employ the
Language Evolution Language. Only in cases it does not cover, elementary
grammar and word evolution operations are used.

The Language Evolution Language is extensible, allowing users to add
their own coupled evolution commands. This way we hope to gradually grow
it until it provides all commonly encountered language evolution operations.

It is interesting to notice that the Language Evolution Language itself is
a DSL that is being developed in a bottom-up, stepwise manner and could
thus be implemented using Lever. However, the Language Evolution Lan-
guage is currently realized as an internal DSL, since the Grammar- and Word
Evolution Languages are still evolving, as our understanding of grammar and
tree transformations changes. It is planned to implement the Language Evo-
lution Language using Lever, as soon as the Grammar- and Word Evolution
Languages reach a sufficient level of stability.

2.4 Adaptation of Language Processing Tools

Lever can automatically produce parsers for its languages. It generates SDF
grammars [2] from labeled context free grammars and uses the SGLR parser [6]
to instantiate labeled derivation trees from words of the language. Adaptation
of the parser is thus completely automated. 3

3 Note that Lever does not depend on GLR parsing techniques. If their use is not desired,
they can be replaced by hand-written parsers. However, parser adaptation then cannot be

3



Juergens and Pizka

Language processing tools (i. e. generators) use path expressions to access
nodes in labeled derivation trees. Lever does not automate the adaptation
of these path expressions after language evolution, yet. But path expressions
are grammar- aware: Lever validates path expressions statically against the
grammar to detect those expressions that would fail or only produce empty
result sets when evaluated on labeled derivation trees. This static checking
detects all path expressions that broke during language evolution.

3 Demonstration

We demonstrate an exemplary evolution step to illustrate the stepwise devel-
opment of a simple DSL to generate data structures. The initial grammar is
displayed textually 4 and visually 5 in Figures 1 and 2a. It contains two para-
meters that influence code generation: The type describes allowed data objects
and when unique is present, there may be no two equal objects contained in
store instances. Figures 3, and 2b show words for the initial grammar (both
textually and visually). 6

"Store" "[" lbl:"type=" type:"[a-z]+" "unique"? "]" -> Datastructure {Store}

Fig. 1. Initial Grammar in textual form

Store

Store

Store

[

ob

type=

label

[a-z]+

type

unique

Unique?

]

cb

Datastructure

Store

Store

Store

[

ob

type=

label

string

type

]

cb

Fig. 2. a) Initial Grammar b) Initial Word

Store [type=string] Bag [type=string]
Store [type=object unique] Set [type=object]

Fig. 3. Words before and after evolution

As our understanding of the domain of data structures grows, we decide
to replace the unique keyword with the terms Set and Bag. To reflect our
changed understanding of the domain, we evolve our DSL accordingly:

• All unique Stores are to be converted to Sets, all other instances to Bags.

• Both data structures contain the type parameter. To avoid duplication in
the resulting grammar, we encapsulate it into a production of its own.

automated anymore.
4 In this example, some of the labels of literal symbols have been omitted for brevity.
5 Key: double ellipses are sorts, single ellipses are productions and boxes are terminals.
6 Key: ellipses are nodes corresponding to productions, boxes are leafs with word fragments.

4



Juergens and Pizka

• The Store production is now unused and gets removed from the grammar.

Figures 3, 4, 5a and 5b display grammar and words after evolution.

"Set" ob:"[" Type cb:"]" -> Datastructure {Set}
"Bag" ob:"[" Type cb:"]" -> Datastructure {Bag}
lbl:"type=" type:"[a-z]+" -> Type {Type}

Fig. 4. Textual representation of the evolved grammar

Bag

Bag

Bag

[

ob

Type

Type

]

cb

Datastructure

Set

Type

Type

Set

Set

[

ob

]

cb

type=

label

[a-z]+

type

Bag

Bag

Bag

[

ob

Type

Type

]

cb

type=

label

string

type

Fig. 5. a) Evolved grammar b) Evolved word

Figure 6 shows the Language Evolution Language commands for these
evolution operations. 7

encapsulate "lbl", "type" into Type in Store

create production "Set" ob:"[" Type cb"]" -> Datastructure {Set}
create production "Bag" ob:"[" Type cb"]" -> Datastructure {Bag}

for store in Stores:
remove literal "Store"
if contains literal unique:

set production to "Datastructures.Set"
append leaf "Set"

else:
set production to "Datastructures.Bag"
append leaf "Bag"

delete production "Store"

Fig. 6. Language Evolution Language statements

7 The syntax of the statements has been simplified to increase readability.

5



Juergens and Pizka

4 Conclusion

Lever provides several DSLs for different levels of language evolution: the
Grammar Evolution Language for grammars, the Word Evolution Language
for words (i. e. programs) and the Language Evolution Language for the cou-
pled evolution of grammar and words. Evolution operations formulated using
these DSLs allow Lever to automate the adaptation of existing words and
parsers. Furthermore, Lever can point out areas that need manual adaptation
in tools that do not get adapted automatically (e. g. generators). Compared
to ad hoc approaches to DSL evolution, Lever thus significantly decreases
evolution costs.

Future work includes the application of Lever to the development of real
world DSLs to grow the Language Evolution Language and thus increase its
expressiveness. Additionally, we plan to automatically adapt path expres-
sions for those Language Evolution Language commands that merely refactor
a language (i. e. renaming of nonterminals, encapsulating or inlining nonter-
minals,...).

Lever is currently being implemented and tested and will be made available
in the first half of 2006.

References

[1] Garlan, D., C. W. Krueger and B. S. Lerner, Transformgen: automating the
maintenance of structure-oriented environments, ACM Trans. Program. Lang.
Syst. 16 (1994), pp. 727–774.

[2] Heering, J., P. R. H. Hendriks, P. Klint and J. Rekers, The syntax definition
formalism sdf reference manual, SIGPLAN Not. 24 (1989), pp. 43–75.

[3] Lämmel, R., Grammar Adaptation, in: Proc. Formal Methods Europe (FME)
2001, LNCS 2021 (2001), pp. 550–570.

[4] Lämmel, R. and G. Wachsmuth, Transformation of SDF syntax definitions
in the ASF+SDF Meta-Environment, in: M. van den Brand and D. Parigot,
editors, Proceedings of the First Workshop on Language Descriptions, Tools
and Applications (LDTA’01), Genova, Italy, April 7, 2001, Satellite event of
ETAPS’2001, ENTCS 44 (2001).

[5] Staudt, B. J., C. W. Krueger and D. Garlan, A structural approach to the
maintenance of structure-oriented environments, in: SDE 2: Proceedings of the
second ACM SIGSOFT/SIGPLAN software engineering symposium on Practical
software development environments (1987), pp. 160–170.

[6] van den Brand, M. G. J., J. Scheerder, J. J. Vinju and E. Visser, Disambiguation
filters for scannerless generalized lr parsers, in: CC ’02: Proceedings of the 11th
International Conference on Compiler Construction (2002), pp. 143–158.

6


	Introduction
	Overview of Language Evolution with Lever
	Grammar Evolution
	Word Evolution
	Coupled Evolution of Grammar and Words
	Adaptation of Language Processing Tools

	Demonstration
	Conclusion
	References

