
Demystifying Maintainability ∗

Manfred Broy
broy@in.tum.de

Florian Deissenboeck
deissenb@in.tum.de

Markus Pizka
pizka@in.tum.de

Institut für Informatik
Technische Universität München
Garching b. München, Germany

ABSTRACT
Due to its economic impact “maintainability” is broadly ac-
cepted as an important quality attribute of software systems.
But in contrast to attributes such as performance and cor-
rectness, there is no common understanding of what main-
tainability actually is, how it can be achieved, measured, or
assessed. In fact, every software organization of significant
size seems to have its own definition of maintainability. We
address this problem by defining an unique two-dimensional
quality model that associates maintenance activities with
system properties including the capabilities of the organi-
zation. The separation of activities and properties facili-
tates the identification of sound quality criteria and allows
to reason about their interdependencies. The resulting qual-
ity controlling process enforces these criteria through tool-
supported measurements as well as manual inspections. We
report on our experiences with the incremental development
of the quality model and its application to large scale com-
mercial software projects. Among the positive effects are a
slowdown of decay and a significantly increased awareness
for long-term quality aspects.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhance-
ment; D.2.9 [Software Engineering]: Management—Soft-
ware quality assurance

General Terms
Management, Measurement

Keywords
Maintainability, Quality Models, Quality Assessment

∗Part of this work was sponsored by the German Federal
Ministry for Education and Research (BMBF) as part of
the project VSEK (www.software-kompetenz.de).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WoSQ’06, May 21, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

1. ASSESSING MAINTAINABILITY
Virtually any software dependent organization has a vital

interest in reducing its spending for software maintenance
activities. This comes at no surprise as the bulk of the life
cycle costs for software systems is not consumed by the de-
velopment of new software but the continuous extension,
adaption, and bug fixing of existing software [22]. In addi-
tion to financial savings, for many organizations, the time
needed to complete a software maintenance task, such as
an extension of an existing functionality, largely determines
their ability to adapt their business processes to changing
market situations or to implement innovative products and
services. That is to say that with the present yet increasing
dependency on large scale software systems, the ability to
change existing software in a timely and economically man-
ner becomes increasingly critical for numerous enterprises of
diverse branches.

1.1 Myths
The term most frequently associated with more flexible

software and significantly reduced long-term costs is main-
tainability. But what is maintainability?

Frequently found definitions of maintainability like “The
effort needed to make specified modifications to a compo-
nent implementation”1 or “a system is maintainable if the
correction of minor bugs only requires minor efforts” [25]
seem overly simplified. In 2003 we conducted a study on
software maintenance practices in German software organi-
zations [16]. Interestingly, of the 47 respondents only 20%
performed specific checking for maintainability during qual-
ity assurance. We further interviewed those 20% perform-
ing maintainability checking, about the criteria they used to
check for maintainability. The individual responses differed
significantly and ranged from object-orientation, cyclomatic
complexity [19], limited numbers of lines per method, de-
scriptive identifier naming, down to service oriented archi-
tectures or OMG’s model-driven architecture.

From this we conclude, there is little common ground on
what “maintainability” actually is, how it can be assessed,
and how it could be achieved.

1.2 Consequences
One follow-up problem of this diffuse perception is closely

associated with the term “legacy system”. Many software
systems that are deployed in large companies today are al-
ready 25 years or even older. Due to the absence of an

1SEI Open Systems Glossary (http://www.sei.cmu.edu/
opensystems/glossary.html)

21

accepted set of criteria for the assessment of the maintain-
ability of existing software systems and the low profile of
structured assessment processes such as SRAH [23] they are
often hastily coined as “legacy” because of rather inessen-
tial properties such as an unfashionable implementation lan-
guage and style. The term “legacy” is often equated with
being “unmaintainable” or the desire to replace it.

This in turn causes frequent reinventions of the wheel. We
are indeed surprised how large organizations willingly spend
enormous budgets just to replace existing “legacy” systems
with new ones that frequently neither provide any increased
“maintainability” nor added business value. In recent times,
at least three large scale displacement projects have come
to our attention, where the development of the new system
was canceled even before their first release. The total loss of
these three projects sums up to more than 50 million dollars.

To avoid such losses it is mandatory to substitute sub-
jective judgement with solid reasoning by means of well-
founded criteria that allow to assess the state of a system as
well as the future impact of the defects it contains.

1.3 Well-Founded and Checkable
Certainly, programming and documentation guide lines

as well as international standards [14] list various possible
criteria for “maintainability”. However, we argue that the
missing impact and adoption of these criteria is due to one
or both of the following two shortcomings of these criteria:
first, being too general to be assessed (e. g. modifiability) or
second, having no sound justification (e. g. methods may be
no longer than 30 lines). Non-assessable criteria can inher-
ently not have any impact, unjustified ones become ignored.

Therefore, effective criteria must be both well-founded
and checkable. Otherwise, they will have no impact and/or
will be ignored. Note that we stress “checkable” instead of
“measurable with a tool” because we carefully distinguish
between automatic, semi-automatic and manual checking
(i. e. inspections) and exploit all three possibilities to effec-
tively assess maintainability.

The approach presented in this paper uses a top-down
method to identify criteria that fulfill these requirements.
The stepwise top-down refinement of goals into subgoals and
down to checkable criteria helps to achieve completeness and
allows to reason about the criteria and their interplay. The
starting point of this refinement is the breakdown of main-
tenance tasks into phases and activities according to [12].
Considering the diverse nature of activities, such as “prob-
lem understanding” and “testing” it becomes evident, that
the criteria that actually influence the maintenance effort
a numerous and diverse. Psychological effects, such as the
broken window [24] deserve just as much attention as orga-
nizational issues (e. g. turnover) and properties of the code
like naming of identifiers [5]. Any of these aspects may have
a significant and vastly independent impact on the future
maintenance effort.

2. RELATED WORK
Besides the rather vague definitions of maintainability cited

above there are more elaborated definitions in the context
of software metrics and quality modeling.

Metrics-based Approaches Several groups proposed me-
trics-based methods to measure attributes of software sys-
tems which are believed to affect maintenance [1, 4]. Typ-

ically, these methods use a set of well-known metrics like
lines of code, Halstead volume [11], or McCabe’s Cyclomatic
Complexity [19] and combine them into a single value, called
maintainability index by means of statistically determined
weights.

Although such indices may indeed often expose a correla-
tion with subjective impressions and economical facts of a
software system, they still suffer from serious shortcomings.
First, their intrinsic goal is to assess overall maintainability
which is, as we claimed above, of questionable use as long as
the organizational context of the observation and the future
purpose of the system is ignored.

Second, they focus on properties which can be measured
automatically by analyzing source code and thereby limit
themselves to syntactic aspects. Unfortunately, many es-
sential quality issues, such as the usage of appropriate data
structures and meaningful documentation, are semantic in
nature and can inherently not be analyzed automatically.

Lastly, the indices and the underlying metrics are rarely
validated and frequently violate the most basic requirements
for measures; see measurement theory [10, 15]. Because of
this, most known metrics, such as the Cyclomatic Complex-
ity, are neither sufficient nor necessary to indicate a quality
defect. Therefore, individual metrics or simple indices pro-
vide only a poor basis for effective quality assessments.

Quality Modeling As maintainability is commonly per-
ceived as a quality attribute similar to security or safety [14]
it is only natural that research on software maintenance
adopted many ideas from the broader field of software qual-
ity. A promising approach developed in this field are qual-
ity models which aim at describing complex quality criteria
by breaking them down into more manageable sub-criteria.
Such models are usually designed in a tree-like fashion with
abstract quality attributes like maintainability or reliabil-
ity at the top and more concrete ones like analyzability or
changeability on lower levels. The leaf factors are ideally
detailed enough to be assessed with some software metrics.
The values determined by the metrics can then be aggre-
gated towards the root of the tree to obtain values for higher
level quality attributes. This method is frequently called the
decompositional or Factor-Criteria-Metric (FCM) approach
and was first used by McCall [20] and Boehm [3].

Although these and more recent approaches like [8, 7, 18]
are clearly superior to the purely metrics based approaches
described above, they have also failed to establish a broadly
acceptable basis for quality assessments so far. We believe
the reasons for this are the prevalent yet unrealistic desire
to condense quality attributes as complex as maintainability
into a single value and the fact that these models typically
limit themselves to a fixed number of model levels. For ex-
ample, FCM’s 3 level structure is inadequate. High level
goals like usability can not be broken down into measur-
able properties in only 2 steps. Further troublesome is their
reluctance against properties that can not be measured au-
tomatically or aren’t directly related to the product but the
associated organization. E. g. it is incomprehensible why
non of the models known to us highlights the influence of
organizational issues like the existence of a configuration
management processes on the overall maintenance effort.

Processes and Process Models Typically these organi-
zational issues are covered by process-based approaches to

22

software quality like the ISO 9000 standards or CMM [21].
Unfortunately, there is the widely disputed misconception,
that good processes automatically guarantee high quality
products [17]. Of course, processes are of high importance
and they determine the reliability and reproducibility of the
development process. However, the quality of the outcome
still strongly depends on the actual criteria, skills, and tools
used during development.

There’s an abundance of further highly valuable work on
software quality in general and maintainability in particular
that we do not explicitly mention here, as it is either out-of-
scope or does not fundamentally differ from the work already
mentioned. Overall, this is and has been a very active field
of research which definitely does not need to be reinvented
by itself. Nevertheless, there are significant gaps and se-
vere misconceptions which demand to be filled respectively
corrected.

3. MODELING MAINTAINABILITY
To provide a solid foundation for both, the assessment of

existing systems and the development of new long-lived soft-
ware systems we developed a two dimensional quality model
that integrates and explains relevant criteria and describes
their impact on actual maintenance activities. The following
paragraphs describe the process that has led to this model
and the final result.

3.1 Acts vs Facts
In an initial step we together with our industrial partners

conducted several brainstorming sessions led by the question
“What are the factors that influence maintenance productiv-
ity?”. Our aim was to collect all relevant ideas and build a
FCM like decompositional quality model from there. Unlike
Dromey [8] suggested we did not build the model bottom-up
starting from the measurable criteria. Instead, we tried to
build the model top-down to ensure that all criteria consid-
ered relevant for maintenance productivity, independently
from the question on how difficult the measurement or as-
sessment could become, are collected.

In turn of this incremental refinement process it became
harder and harder to maintain a consistent model that ade-
quately described the interdependencies between the various
quality criteria. A thorough analysis of this phenomenon
revealed that our model and indeed most previous models
mixed up nodes of two very different kinds: maintenance
activities and characteristics of the system to maintain. An
example for this problem is given in figure 1 which shows the
maintainability branch of Boehm’s Software Quality Char-
acteristics Tree [3].

Maintainability

Modifiability

Testability

Understandability

Augmentability

Structuredness

Communicativeness

Accessibility

Self-Descriptivness

Conciseness

Legibility

Figure 1: Software Quality Characteristics Tree

Though adjectives are used as descriptions the nodes in
the gray boxes refer to activities whereas the uncolored nodes

describe system characteristics (albeit very general ones). So
the model should rather read as: When we maintain a sys-
tem we need to modify it and this activity of modification is
(in some way) influenced by the structuredness of the sys-
tem. While this difference may not look important at first
sight we claim that this mixture of activities and charac-
teristics is at the root of most problems encountered with
previous models. The semantics of the edges of the tree is
unclear or at least ambiguous because of this mixture. And
since the edges do not have a clear meaning they neither
indicate a sound explanation for the relation of two nodes
nor can they be used to aggregate values!

As the actual maintenance efforts strongly depend on both,
the type of system and the kind of maintenance activity it
should be obvious that the need to distinguish between ac-
tivities and characteristics becomes not only clear but im-
perative. This can be illustrated by the example of two de-
velopment organizations where company A is responsible for
adding functionality to a system while company B’s task is
merely fixing bugs of the same system just before its phase-
out. On can imagine that the success of company A depends
on different quality criteria (e. g. architectural characteris-
tics) than company B’s (e. g. a well-kept bug-tracking sys-
tem). While both organizations will pay attention to some
common attributes such as documentation, A and B would
and should rate the maintainability of S in quite different
ways because they’re involved in fundamentally different ac-
tivities.

Focusing on the individual factors that influence produc-
tivity within a certain context widens the scope of the rele-
vant criteria. A and B’s productivity is not only determined
by the system itself but by a plethora of other factors which
include the skills of the engineers, the presence of appropri-
ate software processes and the availability of proper tools
like debuggers. To capture all these factors together with
the system’s characteristics we choose to speak about facts
about the situation instead of properties of the software sys-
tem from now on.

3.2 The 2-Dimensional Model
The consequent separation of activities and facts leads

to a new 2-dimensional quality model that regards activities
and facts as rows and columns of a matrix with explanations
for their interrelation as its elements.

The set of relevant activities depends on the particular
development and maintenance process of the organization
that uses the quality model. As an example, we use the
IEEE 1219 standard maintenance process [13]. Its activity
breakdown structure is depicted in figure 2. To the sake of
brevity we only show a subset of the activities. Note, that
the edges of the tree do have a clear meaning, that is the
decomposition of activities into subtasks.

The 2nd dimension of the model, the facts about the sit-
uation, are modeled similar to an FCM model but without
activity-based nodes like augmentability. It’s important to
understand, that we do not limit this dimension to proper-
ties of the software system, e. g. structuredness, but try to
capture all factors that affect one or more activities. An
excerpt of a facts tree is shown in figure 3. Again, the se-
mantics of the edges within this tree is free from ambiguity
though different from the activity tree. The joint develop-
ment of the facts tree with our industrial partners lead to
more than 250 different facts.

23

Analysis

Implementation

Testing

Delivery

Coding

Integration

Unit Testing

Integration Testing

Preparation

Installation

Impact Analysis

Identify Elements
To Modify

Maintenance

Figure 2: Example activities

Situation

Infrastructure

Organization

Product

Tools

Knowledge Base

Fluctuation

Skills

Documentation

Dynamics

Static Aspects

Figure 3: Example facts

Obviously the granularity of the facts shown in the dia-
grams are too coarse to be actually evaluated. We follow
the FCM approach for the situation tree by stepwise refin-
ing high level facts into detailed, tangible ones which we
call atomic facts. An atomic fact is a fact that can or must
be assessed or checked without further decomposition either
because its assessment is obvious or there is no known de-
composition.

Since many important atomic facts are semantic in na-
ture and inherently not computable, we carefully distinguish
three fact categories for the implementation of the quality
model.

1. Computable facts that can be extracted or measured
with a tool. An example is an automated check for
switch-statements without a default-case.

2. Facts that require manual activities; e. g. reviews. An
example is a review activity that identifies the im-
proper use of data structures.

3. Facts that can be computed to a limited extent re-
quiring additional manual inspection. An example is
redundancy analysis where cloned source code can be
found with a tool but other kinds of redundancy must
be left to manual inspection.

To achieve or measure maintainability in a given project
setting we now need to establish the interrelation between
facts and activities. Because of the tree-like structures of
activities and facts it is sufficient to link atomic facts with
atomic activities. This relationship is best expressed by a
matrix as depicted in the simplified figure 4.

The matrix points out what activities are affected by which
facts and allows to aggregate results from the atomic level
onto higher levels in both trees because of the unambiguous
semantics of the edges. So, one can determine that concept
location is affected by the names of identifiers and the pres-
ence of a debugger. Vice versa, cloned code has an impact
on 2 maintenance activities.

Maintenance

Modifi-
cation

Coding
Concept-
Location

Impact-
Analysis

ImplementationAnalysis

Concurrency

Recursion

Debugger

Refactoring

Identifiers

Cloning

Code Format

Dy
na

m
ic

s
St

at
ic

 A
sp

ec
ts

To
ol

s

In
fra

st
ru

ct
.

Pr
od

uc
t

Si
tu

at
io

n

Figure 4: Maintainability Matrix

The aggregation within the two trees provides a simple
means to cross-check the integrity of the model. For exam-
ple, the sample model depicted states that tools don’t have
an impact on coding, which is nonsense. The problem lies
in the incompleteness of the depicted model, that doesn’t
include tools like integrated development environments.

So far, we have only used a Boolean relation between facts
and activities. This can be viewed as regarding every fact of
equal importance for any activity which is of course untrue.
To better reflect the different impact of the various facts we
use relative weights as elements of the matrix. A relative
weight is a value within the interval [0, 1] and denotes the
impact of the fact on the activity relative to the other facts.
A value of 0 refers to no impact and 1 to a situation where
the activity is affected by the corresponding fact, only. Con-
sistency of weighting requires that the sums in each column
(per atomic activity) is 1.

It should be evident, that the precise determination of the
weights will require many years of research and empirical
studies similar to the parameters in economic models like
CoCoMo [2]. However, we made the experience that even
rough estimates of experienced members of the team will
already provide good starting points and provide guidance
for development teams to focus on relevant quality facts (see
section 6).

4. SAMPLE FACTS
As the instance of the model that we use in commercial

projects is far too big to be presented in its entirety the
following examples are meant to illustrate some details of
a realistic instance of our two-dimensional model and em-
phasize the broad spectrum covered. Since the activity tree
is individually determined by each organization according
to its processes the following examples focus on the rather
invariant facts tree that covers properties of the product as
well as organizational issues.

4.1 Product Subtree
Clearly, most maintenance activities are somehow influ-

enced by the software product that is to be maintained.
Therefore, the bulk of the nodes of the facts tree is con-
cerned with product characteristics. Important facts about
the product are concerned either with the code itself or its
documentation.

As shown in figure 3 the facts about the code are subdi-
vided into facts about the static and dynamic structure of
the code. This categorization was chosen because static as

24

well as dynamic aspects of a program are crucial for its com-
prehension [9] and comprehension is known to be of major
importance during software maintenance [12, 1].

Another subtree captures clumsy or dangerous constructs
and practices sometimes described as bad smells or anom-
alies. This includes amongst others code cloning, unused
code, or unhandled exceptions. Again some of these facts
can be checked automatically using tools and others need
manual inspection.

Due to its importance, a considerable number of facts is
devoted to documentation properties. Identified facts influ-
encing the readability of the documentation include presen-
tational issues as well as the content of the documentation.
Facts of paramount importance are outdatedness, incoher-
ence with the program, redundancy and inadequate breadth.
Unfortunately, the documentation subtree offers very sparse
opportunities for automated assessments and calls for man-
ual reviews.

We experienced that the detailed explanation of impor-
tant facts provided through the documentation subtree (cur-
rently about 40 nodes) greatly helped to structure the qual-
ity assurance process for documentation. Apart from that
there’s indeed a small but valuable number of facts which
can be assessed in an automated way, e. g. for a Java-based
system we use an automated check to make sure that all
packages, classes, methods, and fields are commented (see
also section 6).

4.2 Organization Subtree
As stated earlier, a model of maintainability may not re-

strict itself to product characteristics; it must take organi-
zational issues into account as well. A drastic example that
has come to our attention was a company that developed a
product of fairly high quality but lost a significant part of its
developers to a competitor. One can imagine that an inci-
dent like this dramatically increases the future maintenance
effort though the system itself has not changed.

Obviously, maintenance productivity strongly depends on
the people performing it. So one of the central organiza-
tional facts is concerned with human resources and con-
tains atomic facts like turnover measured through the an-
nual turnover rate. Another human resource fact is a skill
node which may or may not be associated with productivity
metrics.

Process-based research on software quality shows that well-
defined processes do contribute to software quality. Our
model instance does not go into details of software processes
but checks for the existence of sub-processes like configu-
ration management which undisputedly influences various
maintenance activities.

A great deal of typical maintenance activities are nowa-
days efficiently supported by tools. Examples are debuggers,
reengineering and visualization tools or configuration man-
agement tools. Due to the possible gains in productivity the
use of such tools is crucial for efficient maintenance. So, our
model instance features a tool subtree as part of the organi-
zation subtree. The tool subtree decomposes into respective
facts about the different kinds of tools.

5. QUALITY CONTROLLING
This comprehensive and structured collection of criteria

provides a precise specification of the required quality as-

surance activities and their frequency. The latter is due
to fact that many defects, such as excessive redundancy be-
cause of copy&paste programming, can hardly be fixed later
on but must be identified and eliminated as soon as possi-
ble. Criteria of this kind require daily checking while it is
sufficient to check other criteria, such as the consistency of
documentation and code, at certain points, only.

Manual quality controlling activities are inherently costly
and must be substituted or supported with adequate tool
support as far as possible. As a rule of thumb, the likeli-
hood and frequency of a sophisticated quality assessments
correlates with the availability of quality assurance tools.

Along with the model we developed the new quality as-
sessment tool framework ConQAT. ConQAT ’s flexible and
reconfigurable pipes-and-filter-style architecture enables the
composition of different assessment tools in a way that pre-
cisely matches our quality model. Details on ConQAT can
be found in [6].

An example ConQAT output is shown in figure 5. Here,
a simple traffic-light-scale is used to assess different criteria.

Figure 5: ConQAT Assessment Demo

6. EXPERIENCES
Our experiences with the two-dimensional model stem

from a commercial project in the field of telecommunication.
As the system was large (3.5 MLOC2 C++, COBOL, Java),
15 years old and under active maintenance with 150 change
requests per year it was very well suited for an application
of our quality model.

We found that an efficient way of introducing the model
was to present it as a single document in a guideline-like-
fashion since this is what developers are familiar with. This
linear representation of the model is generated from a rela-
tional database that stores all criteria, activities and their
interrelationship. The guideline lists all atomic facts and
their influence on the different maintenance activities, and
developers can look up what facts influence which activi-
ties. In the appendix of the document developers find the
relations between different facts. To keep things simple, the
impact of atomic facts on the activities was modeled with
a three-valued semantic: negative influence, no influence,
positive influence.

At the beginning, we encountered a prevalent reluctance
to maintainability assessments and were confronted with
skepticism. However, developers and project managers alike
soon started to develop an interest in maintainability is-
sues after they realized the well-foundedness of the model.
Since the matrix elements provide explanations for the influ-
ences of factors, their interdependencies, and their effects we
could successfully foster a lasting discussion about quality
and raise the awareness for the importance of quality issues
in general and our quality model in particular.
2million lines of code

25

The model’s other fundamental property, checkability,
proved to be crucial for the acceptance of the model, too.
Only after developers saw how they could actually assess a
fact they were willing to accept its importance. Despite the
fact that there is always a bias against facts demanding man-
ual inspections, we found that the precise review guidelines
provided by the model helped to motivate manual reviews.

Executives of the company regarded the application of dif-
ferent quality assessment tools and their integration within
ConQAT for continuous quality controlling as the most sub-
stantial benefit of our endeavor. This view was shared by
developers and project managers. Since the same organiza-
tion failed to install a classic metric program due to lack of
acceptance we claim this to be a noticeable success. We are
convinced that this could only be achieved by presenting a
guideline that not only lists a set of rules but provides a
clear explanation of the relevant factors and their interde-
pendencies.

Besides that the application of our model in an industrial
project generated highly valuable insight into real-life as-
pects of software maintenance. On example are overly high
compilation times that weren’t included in our model in the
beginning but seriously hamper productivity at the site of
our industrial partner. A thorough analysis not only helped
to understand the reasons for this problem but produced a
solution that significantly reduced compile times.

7. CONCLUSION
Although maintainability is undisputedly considered one

of the fundamental quality attributes of software systems
the research community has not yet produced a sound and
accepted definition or even a common understanding what
maintainability actually is. Substantiated by various exam-
ples we showed that this shortcoming is due to the intrinsic
problem that there simply is no such thing as “the maintain-
ability of a software system”. We showed that the factors
that influence maintenance productivity must be put into
context with particular activities. This notion is captured by
our novel two-dimensional quality model for software main-
tenance which maps facts about a development situation to
maintenance activities and thereby highlights their relative
influence.

Although the model is still incomplete and we don’t claim
completion is a task a single team of researchers can achieve,
our experiences in a large commercial project not only sup-
port our work but generated measurable improvements along-
side a plenitude of new insights.

Our current and future work focuses on the integration of
these insights into the model and broadening the application
of the model to other projects. The gathering of detailed
data on the effects of the model will not only help to improve
the model itself but gradually lead to a rich set of empirical
data that will allow us to determine the relative weights
of the various facts which is a prerequisite for developing
accurate estimates for the benefit of quality improvements.

8. REFERENCES
[1] G. M. Berns. Assessing software maintainability. ACM

Communications, 27(1), 1984.

[2] B. Boehm. Software Engineering Economics.
Prentice-Hall, 1981.

[3] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow,
G. J. Macleod, and M. J. Merrit. Characteristics of
Software Quality. North-Holland, 1978.

[4] D. Coleman, D. Ash, B. Lowther, and P. W. Oman.
Using metrics to evaluate software system
maintainability. Computer, 27(8), 1994.

[5] F. Deissenboeck and M. Pizka. Concise and consistent
naming. In IWPC 2005, pages 97–106, Washington,
DC, USA, 2005. IEEE Computer Society.

[6] F. Deissenboeck, M. Pizka, and T. Seifert.
Tool-supported realtime quality assessment. In
Pre-Proceedings of STEP 2005, Budapest, Hungary,
2005.

[7] R. G. Dromey. A model for software product quality.
IEEE Trans. Softw. Eng., 21(2), 1995.

[8] R. G. Dromey. Cornering the chimera. IEEE Software,
13(1), 1996.

[9] T. Eisenbarth, R. Koschke, and D. Simon. Aiding
program comprehension by static and dynamic feature
analysis. In ICSM 2001, 2001.

[10] N. Fenton. Software measurement: A necessary
scientific basis. IEEE Trans. Softw. Eng., 20(3), 1994.

[11] M. Halstead. Elements of Software Science. Elsevier
Science Inc., New York, NY, USA, 1977.

[12] C. S. Hartzman and C. F. Austin. Maintenance
productivity. In CASCON 1993. IBM Press, 1993.

[13] IEEE 1219 Software maintenance. Standard, IEEE,
1998.

[14] ISO 9126-1 Software engineering - Product quality -
Part 1: Quality model. International standard, ISO,
2003.

[15] C. Kaner and W. P. Bond. Software engineering
metrics: What do they measure and how do we know?
In METRICS 2004. IEEE CS Press, 2004.

[16] K. Katheder. Studie zur Software-Wartung. Bachelor
thesis, Technische Universität München, Garching,
Germany, Nov. 2003.

[17] B. Kitchenham and S. L. Pfleeger. Software quality:
The elusive target. IEEE Software, 13(1), 1996.

[18] R. Marinescu and D. Ratiu. Quantifying the quality of
object-oriented design: The factor-strategy model. In
WCRE 2004. IEEE CS Press, 2004.

[19] T. J. McCabe. A complexity measure. In ICSE 1976.
IEEE CS Press, 1976.

[20] J. McCall and G. Walters. Factors in Software
Quality. The National Technical Information Service
(NTIS), Springfield, VA, USA, 1977.

[21] M. Paulk, C. V. Weber, B. Curtis, and M. B. Chrissis.
The Capability Maturity Model: Guidelines for
Improving the Software Process. Addison-Wesley, 1995.

[22] T. M. Pigoski. Practical Software Maintenance. Wiley
Computer Publishing, 1996.

[23] STSC. Software Reengineering Assessment Handbook
v3.0. Technical report, STSC, U.S. Department of
Defense, Mar. 1997.

[24] J. Q. Wilson and G. L. Kelling. Broken windows. The
Atlantic Monthly, 249(3), 1982.

[25] B. Wix and H. Balzert, editors. Softwarewartung.
Angewandte Informatik. BI Wissenschaftsverlag, 1988.

26

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

