
2006-01-1222

An Architecture-Centric Approach towards the Construction of
Dependable Automotive Software

D. Wild, A. Fleischmann, J. Hartmann, C. Pfaller, M. Rappl, S. Rittmann
Technische Universität München – Fakultät für Informatik

Copyright © 2006 SAE International

ABSTRACT

In this paper a model-based design approach currently
developed is introduced to optimize the development
process of automotive software. The approach plays
special emphasis on a quality-oriented construction of
embedded software to shorten the development life cy-
cle and the development costs at the same time. “Qual-
ity-oriented” in this context means, that design and im-
plementation decisions may be better traced back to the
actual user requirements which are essential for the
validation of the system. In contrast to low-level model-
ing approaches (such as Matlab/Simulink [1] or ASCET-
SD [2], which mainly focus on technical aspects of the
system), high-level modeling concepts are introduced to
represent HW-/SW-architectures within a set of con-
secutive abstraction levels.

A newly reworked system of automotive-specific ab-
straction levels is presented, where architectures are
specified introducing more detail on each level. The sys-
tem of abstraction levels supports the inheritance of
model information from abstract levels down to concrete
levels and the refinement of this information at each
level. Thus the gap between (informal) requirements and
the implementation is reduced. Since the higher levels
abstract from technical details, reuse of models will be
possible in a very easy way. The abstraction levels will
form the basis for the strongly formal definition of an
automotive specific architecture description language
which we call “CAR-DL” (Combined Architecture De-
scription Language).

The presented approach is currently developed within
the project “mobilSoft”1.

1. INTRODUCTION

Though innovative functions are the key potentials to
competitive advantage in the automotive domain, their
merit will be limited, if their integration into an existing

1 The mobilSoft project is funded by the Bavarian Government under
grant number IuK 188/001.

network of control functions, deployed on a highly dis-
tributed network of control units, cannot be handled in a
managed and predictable way. Architecture Description
Languages (ADLs) [3, 4, 5, 6] provide promising con-
cepts to represent central aspects of the SW-archi-
tecture to support the designer during the design of func-
tions and during the process of integration. However, in
the automotive domain an isolated view on the SW-
architecture is not satisfying; rather an appropriate order
of abstractions is necessary to interconnect the SW-
architecture and the HW-architecture. Each level should
support the designer in answering questions with respect
to compatibility management, diagnosis, verification and
test.

This paper contains an introduction to the automotive-
specific modeling language CAR-DL, which incorporates
a newly reworked order of abstraction levels. The CAR-
DL builds upon prior developments of automotive rele-
vant modeling languages such as AML [7, 8, 9], EAST-
ADL [10, 11, 12], and SAE-AADL [13]. It supports the
representation of SW-/HW-architectures on subsequent
abstraction levels. But in contrast to the preceding mod-
eling languages, the CAR-DL relies on a clearly simpli-
fied order of abstractions, it incorporates less but more
intuitive modeling concepts, and it supports a seamless
top-down information flow.

Figure 1: Abstraction and Concretization of Models

service level

functional level

(informal) requirements

logical cluster level

platform level

implementation (code) abstraction from
actual code

no details of HW-
environment

distribution not
considered

lack of totality
characteristic
system ser-

distributable
units

technical envi-
ronment

 concretization/completeness

total functional
specification

 abstraction

The system under consideration is described by a set of
domain specific abstraction levels (in the following also
called modeling levels) which are built upon each other.
Hereby, the modeling levels (resp.) provide self-con-
tained concepts for the representation of the information,
which are specific for each level.

The modeling levels are ordered hierarchically starting
with (very abstract) high levels and leading to (very con-
crete) low levels (s. figure 1). During the transition from
a higher level to a more concrete level, the model infor-
mation is enriched; i.e. the completeness of the models -
with regard to the implementation of the system - is in-
creased top down. Thereby, the transition has to be cor-
rect: in spite of the additional information the specifica-
tion of higher levels must be obeyed and completely re-
alized. It must be pointed out that no primary decompo-
sition of the system into subsystems or components is
made during the transition from one level to another. In-
stead, the system is enriched with specific classes of in-
formation on each level, respectively.

Due to the fact, that each level defines its own aspects
which have to be taken into consideration, this system of
modeling levels is a basis for a systematic design proc-
ess of software for embedded automotive systems.

The paper contains a survey of the CAR-DL. In section 2
an automotive specific order of modeling levels is intro-
duced. At each level corresponding modeling constructs
of the CAR-DL and their semantics are described in an
own section. At the end of the paper a conclusion and
an outlook on future work is given.

2. CAR-DL MODELING LEVELS

For the structuring of the development process, four lev-
els were identified, namely:

1. service level

2. functional level

3. logical cluster level

4. platform level

Each level abstracts from specific aspects of the system
under consideration. Hence the lowest level – the plat-
form level – is the most concrete one; it mainly abstracts
just from the actual program code by describing the sin-
gle tasks of the systems. Clusters in the next higher
level – the logical cluster level – do not consider the
technical runtime environment. Furthermore functions on
the functional level abstract additionally from questions
concerning distribution. Finally, services on the service
level do not require – in general – completeness condi-
tions with respect to all possible inputs and outputs; they
only focus on its characteristic input and outputs (s. Fig-
ure 1).

Figure 2 illustrates the most important modeling ele-
ments which correlate with the order of abstractions de-
picted in Figure 1. Beyond, essential interrelationships
between the modeling elements are shown.

Service Function

Cluster Task

1..* 1..*

providedBy

1

1..*

distributedTo

1..* 1

implementedIn

Figure 2: Interrelationships between Modeling Elements
on different Levels
In the following four sections, the individual modeling
levels are described in more detail.

3. THE SERVICE LEVEL

Starting point of the software development process typi-
cally is a (more or less) complete collection of require-
ments being documented in an arbitrary way (e.g. textu-
ally or by means of use cases). The requirements are
not or only loosely related to each other, i.e. it is difficult
to identify unwanted interactions or contradictory re-
quirements. On the service level the majority of the re-
quirements are now formalized consistently and related
to each other in order to detect these contradictions and
interactions.

The aim of the service level is the consolidation and the
precise specification of requirements that describe the
characteristic system behavior. Here, characteristic sys-
tem behavior depicts the behavior that is visible for the
user (which does not only refer to a human user but also
to another system). Among all requirements that have
been acquired so far, those ones describing the charac-
teristic system behavior are chosen, formalized, and re-
lated with each other. The formalization of the system
behavior by means of services and relationships be-
tween services allows for the detection of contradictions
and behavioral conflicts.

The design decisions on this level consist of both, the
specification of the system boundaries and the specifica-
tion of the inputs and outputs (= actions and reactions)
of the system under consideration. The services can be
constructed step by step on basis of composition opera-
tors on this level. Please note, that the behavior is speci-
fied by a pure black box view. Inputs and outputs are
described in a quite abstract way – that is to say: as they
are interpreted by the users. However, the representa-
tion of data (how it is processed by the realization of the
system) is not considered so far. The complete definition

of the overall system behavior is not aim of this level.
The system behavior is only partially defined, i.e. the
behavior is not defined for each possible input se-
quence. The totalization is done on the subsequent func-
tional level.

On the service level, it is out of interest which subsystem
provides which services; also a decomposition of the
system is not done up to now. Furthermore, it is not im-
portant which user generates which input and which user
consumes which output. Figure 3 represents the system
on the service level graphically.

Figure 3: Black-Box-View of the System on the Service
Level

Information Flow within Modeling-Levels

• Functional Level :
The services specified on the first modeling level
are realized by the interplay of the functions on
the functional level. Between functions and ser-
vices there is a n:m-relationship, i.e. one or
more services can be provided by one or more
functions (in latter case, the interplay of several
functions provides the service).

Modeling Elements

Figure 4 depicts a metamodel of the service level. The
main important modeling elements are:

• Service:
Services are finite, causal sequences of Actions.
They own QualityAttributes which for example
can describe timing properties or reliability re-

quirements. Services are hierarchical con-
structs, i.e. they can be further decomposed into
services again.

• Action:
An Action can be either an Event (with no time
specification) or an Activity. An Activity has a
well-defined Duration. Actions are elementary
and expose visible system interfaces to the envi-
ronment of the system.

Service

QualityAttribute

Action

EventActivity

Duration

0..*

mustFulfill

0..*

1..*

1..*
putsInOrder

1

1
has

0..*

0..*

consistsOf

Figure 4: Metamodel of the Service Concept

Benefits of Service Level

• The detection of contradicting requirements is
possible.

• Due to the formalization, the characteristic sys-
tem behavior can be simulated.

• Due to the formalization of the requirements
(and their simulation) the accordance with the
stakeholders’ opinion may be easily validated.

• The reuse of services – i.e. of characteristic sys-
tem properties – is supported.

A

B

C

D

Actions: A,B,C,D
Services: A AND B => C; C AND B => D

4. THE FUNCTIONAL LEVEL

So far, the focus lied on a consistent, but not necessarily
complete, description of the characteristic behavior. On
the functional level, the behavior will now be totalized
and defined completely and deterministically (i.e. the
system provides a well-defined predictable output for
each possible input sequence). Additionally, a decompo-
sition into smaller pieces – again: functions – is done on
the functional level (= hierarchical decomposition).

The design decisions on this level are limited mainly to
the identification of functions, the determination of their
granularity and the mapping of actions to abstract data
types. The functions have to be specified in a way, that
their interplay realizes all services which have been de-
fined on the service level. The system is now presented
as a network of (hierarchical) functions.

On this level the assumption holds that the complete
system does not have to be distributed to different run-
time environments. It is ideally assumed that there exists
a monolithic runtime model, i.e. one single synchronous
and undistributed runtime model. The execution is con-
trolled by global clock and the communication is as-
sumed to consume no time. Aspects regarding the dis-
tribution of functions are not considered up to the logical
cluster level. Figure 5 shows a schematic diagram of the
functional decomposition of a system.

Information Flow within Modeling-Levels

• Service level:
One or several services on the service level are
related to one or more functions on the func-
tional level, i.e. that a service can be established

by several functions, or a function can provide
several services. The actions of the service level
are related to abstract data types of the func-
tional level.

• Logical cluster level:
On the logical cluster level, several functions of
the functional level are grouped to clusters.

Modeling Elements

The main elements on this level – as shown in the meta-
model of Figure 6 – are:

• Function:
The Function is the central concept of this level.
A Function can again consist of Functions (= hi-
erarchical function). A Function which is not de-
composed any further is called an elementary
function.

• Variable:
Variables are related to Functions. On the one
hand, they can describe the interface (Function-
Port), on the other hand they can represent the
internal state of the function (State) due to their
assignment.

• Type:
Each Variable has a specific Type.

FA

FA

FA

FB

FC

FD

FE

FF
FG

FC

AA
AB

AD
AC

AE
AF

AH
AG

AJ
AI

AK
AL

AM

AN
AO

AP

AQ
AR

AS

AU
AV

AW

AX

AT PC

PB

PA
PD

PE

PF

PG

FH

FI FJ

FK

Px and

: Ports

Fx: functions

(Ax: actions)

 Figure 5: Functional Decomposition of a System

Function

Type

Variable

StateFunctionPort

0..*

0..*
consistsOf

1

0..*
typedBy

1

0..*

owns

0..1

0..*

communicates

Figure 6: Metamodel of the Functional Level

Benefits of the Functional Level

• The behavioral specification is totalized.

• The system can be simulated.

• The reuse of functions, in particular the integra-
tion of legacy, is possible.

5. THE LOGICAL CLUSTER LEVEL

Software that typically is deployed in embedded automo-
tive systems runs in asynchronous tasks which are ad-
ministrated by an operating system. Additionally, the
software is typically distributed over different runtime
platforms (CPU including the operating system). How-
ever, up to the functional level (included), the assump-
tion holds that the system runs on a synchronous run-
time platform as a whole, i.e. there exists a global sys-
tem clock which allows a totally deterministic, parallel
– or alternatively sequential – execution.

This assumption is now abandoned on the logical cluster
level. Here, we switch to an asynchronous runtime
model. Thereby more flexibility for the implementation of
the software is yielded; the asynchronous runtime plat-
form corresponds to a communication structure as it is
typical for embedded automotive systems. Due to the
fact that the synchronous runtime platform is a special
case of the asynchronous one, the model of the cluster
level can be implemented on synchronous communica-
tion structures, too. Similarly, realistic conditions under
which the software has to operate are taken into consid-

eration; i.e. the fact, that resources such as computing
time and memory are not available in an unlimited quan-
tity is made allowance.

The aim of the logical cluster platform is to partition the
system into distributable units (= clusters), i.e. to struc-
ture the functions specified at the functional level, and to
combine them to clusters. This has to be done in an
adequate manner so that these can be a usable basis
for the physical distribution which takes part on the sub-
sequent level (namely the platform level).

Each cluster is a self-contained unit with well-defined
communication interfaces. The functionality within these
clusters is not of major interest as this has been done on
the functional level. Instead, more attention is drawn to
interface specifications to obtain distributable units.
These units stem from a combination of functions by
considering the question when these units have to be
executed. Furthermore, the required resources (i.e.
available machine time and memory consumption) have
to be specified in a way that can easily be transformed
into the concrete tasks of the respective runtime plat-
form (on the logical cluster).

Major design decisions made on this level are on the
one hand, at which points the catenation between func-
tions has to be disconnected. And on the other hand, the
determination of the timings defining the scheduling of
units is a further design decision. Alternatively, it has to
be stated when the inputs have to be available from
other units. The formation of clusters can be influenced
by the following criteria, for example:

• Existent hardware: hardware architecture, con-
nected sensors, actuators, bus systems (bus to-
pology)

• Performance / CPU-load / bus load

• Safety and reliability

• Reuse for other systems (� product lines)

• Legacy which has to be integrated

• Maintainability

• Placing of orders to suppliers

• Scalability

Depending on which criteria have the highest priority, the
clusters turn out differently concerning both granularity
and the kind of formation.

On the logical cluster level, the system is represented as
a network of distributable units which we call clusters.
This view on the overall system can also be seen as
“logical deployment”.

Figure 7 describes schematically the transition from the
functional level to the logical cluster level.

Information Flow within Modeling-Levels

• Functional level:
The functional network that was determined on
the functional level is clustered in a new manner
by considering additional criteria. Functions are
grouped to clusters; function ports are related to
cluster ports.

• Platform level:
The clusters are related to individual tasks. Sev-
eral clusters can be related to one task.

Cluster

1

0..*

has

Connector

ClusterPort

Control
Schedule

2

1

communicatesBy

1 1
triggerdBy

Communication
Schedule

1

1..*

controlledBy

1

1..*
controlledBy

Figure 8: Metamodel of the Cluster-Level

Modeling Elements

Figure 8 shows the metamodel, which defines all model-
ing elements on the logical cluster level. These are:

• Cluster:
Clusters are elementary units on this level. They
do not have a hierarchical structure. In a Clus-
ter, grouped functions are executed sequentially.
A cluster has a ControlSchedule which deter-
mines which cluster has to be called after an oc-
curring event, or alternatively, after a detected
timeout.

• ClusterPort:
Each cluster can have an arbitrary number of
ClusterPorts.

• Connector:
Connectors connect two ClusterPorts, respec-
tively, and describe – together with the Cluster-
Ports – the CommunicationSchedule that takes
place between these ClusterPorts.

Benefits of the Logical Cluster Level

• It provides the basis for accurate calculations
concerning time and memory consumption at
known runtime platforms.

• Easy reuse in other systems is possible be-
cause of the platform independence.

• Optimal partitioning/structuring of the functions
with regard to the distribution.

FA

FA

FA

FB

FC

FD
FE
FF

FG

FC
PC

PB

PA
PD

PE

PF

PG

FH

FI FJ

FK

CA

CB

CC

CA

CB

CC

CA

CB

CC

: Ports

Cx : Cluster

 Figure 7: Clustering of System Functions

6. THE PLATFORM LEVEL

On the previous levels, the system was developed
widely independently from the hardware. The hardware
was only taken into consideration if it influenced the be-
havior crucially. This was motivated by reuse issues. On
the platform level the hardware independence is aban-
doned and the system is adapted to the real hardware.
The units detected on the logical cluster level are em-
bedded in the hardware environment which is abstracted
by software (= drivers).

Design decisions that are typically made on this level
comprise the mapping of clusters to controllers or tasks,
and their scheduling and the realization of the communi-
cation between the clusters. This realization must be
done according to the required resources, stated on the
logical cluster level on the one hand, and the availability
of resources on the platform level on the other hand.
The concrete technical data types, the signals and bus
messages are defined and the interfaces between clus-
ters and hardware are adapted accordingly. The system
now consists of communicating hardware components.
The behavior of each component is determined by clus-
ters and drivers.

In Figure 9 a view of a system on the platform level is
shown.

Figure 9: Platform View of a System

Information Flow within Modeling-Levels

• Logical cluster level:
The logical clusters on the logical cluster level
are related to the tasks on the platform level.
Here, the ControlSchedules of the logical cluster
level have to be observed strictly.

ComConnection

Bus PointToPoint

ComUnit

ControlUnit
SensorActuator

OS

ComPort
0..*

1

communicatesBy
1..*

1
shares

API
1..*

0..*

calls

1..*

1

provides

Memory

Task

1..*
1

provides

1..*

1

provides

1..*

1

provides

Figure 10: Metamodel of the Platform Level

Modeling Elements

Modeling elements at the platform level are shown in
Figure 10 and described as follows:

• ComUnit:
Communication units (ComUnits) represent the
most important hardware parts of an embedded
system. These can be Actuators, Sensors, and
ControlUnits.

• ComConnection:
The communication connections (ComConnec-
tion) connect the communication units with each
other. Hereby, a distinction between buses and
point-to-point connections is made.

• OS:
OS represents an operating system that can run
on one controller. The operating system takes
care of the memory management, executes the
tasks, and poses an interface to the communica-
tion ports by means of an API.

• ComPort:
A ComUnit can communicate with another
ComUnit through a ComConnection by means of
a communication port (ComPort).

HW-Driver, OSEK,
Memorymanagement

CA CB C

HW-Driver, OSEK,
Memorymanagement

ECU1 ECU2

Benefits of the Platform Level

• The systematic consolidation of independently
developed software and hardware can be done
mainly automatically.

• Exact guidelines for the technical implementa-
tion of software functions into program code are
given up to now. The specification is detailed
enough for automatic code generation.

7. CONCLUSION

The design approach introduced in this paper aims at a
systematic structuring of different design decisions.
Each of the four modeling levels – service, functional,
logical cluster and platform level – facilitates methodi-
cally specific design decisions which have to be con-
cerned in the respective level. The designer’s main ad-
vantage using such an approach of design methodology
lays in the well coordinated stepwise refinement of the
system construction.

The defined abstraction levels build the basis for the
definition of our architecture description language called
“CAR-DL”. The formal definition of this design language
is the main issue in our ongoing research within the pro-
ject “mobilSoft”. Special emphasis lays on a formal de-
scription of the transition from one level to the subse-
quent one. Thus the design language itself contains and
defines constructs and dependencies for an integrated
design methodology.

With today’s development processes we often face a
gap between the (usually) textually performed require-
ments engineering and the model-based design. Within
the “mobilSoft” project we are aiming at a seamless
transition between these two development tasks. The
services on the service level seem to be a promising ap-
proach to tackle this problem. Together with the re-
quirements engineering competence center of our chair,
we are working on a continuous (model-based) devel-
opment process.

Moreover, safety and reliability are of highest priority for
automotive software systems. Validation and verification
activities of these systems are therefore a major task
during the development process. However, the validation
and the verification of an implementation must be traced
back to the actual (user) requirements to really confirm
the accurate behavior of the system under considera-
tion. As shown above, the introduced modeling levels
comprise a stepwise refinement of requirements, starting
with the definition of services. Furthermore, each level
specifies requirements which must be fulfilled on the fol-
lowing level(s). The integration of techniques for test and
verification in the introduced design approach is there-
fore another major consideration for our future work.

We believe, that a well structured and incremental de-
sign approach as introduced above will lead to more de-
pendable systems and also reduce over-all life-cycle
costs of embedded automotive systems. The well de-
fined design steps will increase quality since smaller de-
sign steps may be less error-prone. An integration of
validation techniques in the early phases of development
– e.g. on service and functional level – will lead to an
early detection of errors. Finally the separation of con-
cerns in different abstraction levels simplifies the reuse
of design models, for example if in a new line of produc-
tion the hardware environment of the system has
changed.

ACKNOWLEDGMENTS

We are much obliged to our colleagues of the “mobil-
Soft” project for many fruitful discussions; in particular
Stefan Kuntz, Markus Bechter, Benno Stützel, Michael
Blum, and Hendrik Dettmering. We thank Manfred Broy
for directing this research. This work has been partially
funded by the Bavarian Government within the “High-
Tech-Offensive Zukunft Bayern” [14].

REFERENCES

1. MathWorks: Matlab/Simulink, online informations
http://www.mathworks.com/, 2005.

2. ETAS: ASCET-SD, online informations,
http://de.etasgroup.com/, 2005.

3. David Garlan: Software Architecture; in Wiley Ency-
clopedia of Software Engineering; J. Marciniak (Ed.);
John Wiley & Sons, 2001.

4. David Garlan, Shang-Wen Cheng, and Andrew J.
Kompanek: Reconciling the needs of architectural
description with object-modeling notations. In Sci-
ence of Computer Programming 44, P. 23-49, El-
sevier, 2002.

5. Nenad Medvidovic, David Rosenblum, David Red-
miles, and Jason Robbins: Modeling Software Archi-
tectures in the Unified Modeling Language, ACM
Transactions on Software Engineering and Method-
ology, Vol. 11, No .1, P. 2-57, 2002.

6. Nenad Medvidovic and Richard N. Taylor: A Classi-
fication and Comparison Framework for Software
Architecture Description Languages, IEEE Transac-
tions on Software Engineering, vol. 26, no. 1, Janu-
ary 2000.

7. Peter Braun, Michael von der Beeck, Ulrich Freund,
and Martin Rappl, “Architecture Centric Modeling of
Automotive Control Software”, SAE Transactions
Paper, Number 2003-01-0856, World Congress of
Automotive Engineers, 2003.

8. Peter Braun, Michael von der Beeck, Martin Rappl,
and Christian Schröder, “Automotive UML”, UML for
Real, Luciano Lavagno, Grant Martin, and Bran

Selic (eds.), Kluwer Academic Publisher, ISBN-
1402075014, 2003.

9. Manfred Broy ++: The Design of distributed Sys-
tems, An introduction to FOCUS – Revised Version,
Technical Report, TUM-I9202, Technische Univer-
sität München, 1993.

10. S. Boutin: Architecture Implementation Language
(AIL); 1er Forum AEE; Guyancourt; March 2000;
http://aee.inria.fr/forum/14032000/SB_Renault.pdf.

11. J. Eisenmann et al.: Entwurf und Implementierung
von Fahrzeugsteuerungsfunktionen auf Basis der
TITUS Client Server Architektur; VDI Berichte
(1374); pp. 309 – 425; 1997; (in German).

12. U. Freund et. al.: Interface Based Design of Distrib-
uted Embedded Automotive Software - The TITUS
Approach. VDI-Berichte (1547); pp. 105 – 123;
2000.

13. SAE: SAE-AADL, online informations,
http://www.aadl.info/, 2005.

14. High–Tech-Offensive Zukunft Bayern, online infor-
mations,
http://www.bayern.de/Wirtschaftsstandort/IuK/High-
Tech-Offensive/hto.html, 2005

15. Manfred Broy, Michael von der Beeck, Peter Braun,
and Martin Rappl: A fundamental critique of the UML
for the specification of embedded systems.

16. Bernd Gebhard and Martin Rappl: Requirements
Management for Automotive Systems Development;
SAE 2000-01-0716; Detroit; 2000.

17. David Harel: StateCharts: A Visual Formalism for
Complex Systems; Science of Computer Program-
ming 8(3); pp. 231- 247; 1987.

18. Derek Hatley and Imtiaz Pirbhai: Strategies for real
time system specification, Dorset House Publishers,
New York, 1988.

19. Object Management Group: OMG Unified Modeling
Language Specification, Version 1.4, September
2001.

20. Object Management Group: OMG XML Metadata In-
terchange (XMI), Proposal to the OMG OA&DTF
RFP 3: Stream-based Model Interchange Format
(SMIF), OMG Dokument, Oct 20th, 1998.

21. Bran Selic, Garth Gullekson, and Paul T. Ward:
Real-Time Object Oriented Modeling, John Wiley,
1994.

22. Desmond F. D’Souza and Alan C. Wills: Objects,
Components and Frameworks with UML – the
CATALYSIS approach, Addison-Wesley, 1998.

CONTACT

Dr. rer. nat. Martin Rappl
Technische Universität München
Fakultät für Informatik
Lehrstuhl IV: Software & Systems Engineering
Boltzmannstraße 3
D-85748 Garching bei München
rappl@in.tum.de

Dipl. Inform. Doris Wild
Technische Universität München
Fakultät für Informatik
Lehrstuhl IV: Software & Systems Engineering
Boltzmannstraße 3
D-85748 Garching bei München
wildd@in.tum.de

	Dr. rer. nat. Martin Rappl
	rappl@in.tum.de
	Dipl. Inform. Doris Wild

