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ABSTRACT 

In this paper a model-based design approach currently 
developed is introduced to optimize the development 
process of automotive software. The approach plays 
special emphasis on a quality-oriented construction of 
embedded software to shorten the development life cy-
cle and the development costs at the same time. “Qual-
ity-oriented” in this context means, that design and im-
plementation decisions may be better traced back to the 
actual user requirements which are essential for the 
validation of the system. In contrast to low-level model-
ing approaches (such as Matlab/Simulink [1] or ASCET-
SD [2], which mainly focus on technical aspects of the 
system), high-level modeling concepts are introduced to 
represent HW-/SW-architectures within a set of con-
secutive abstraction levels.  

A newly reworked system of automotive-specific ab-
straction levels is presented, where architectures are 
specified introducing more detail on each level. The sys-
tem of abstraction levels supports the inheritance of 
model information from abstract levels down to concrete 
levels and the refinement of this information at each 
level. Thus the gap between (informal) requirements and 
the implementation is reduced. Since the higher levels 
abstract from technical details, reuse of models will be 
possible in a very easy way. The abstraction levels will 
form the basis for the strongly formal definition of an 
automotive specific architecture description language 
which we call “CAR-DL” (Combined Architecture De-
scription Language).  

The presented approach is currently developed within 
the project “mobilSoft”1. 

 

1. INTRODUCTION 

Though innovative functions are the key potentials to 
competitive advantage in the automotive domain, their 
merit will be limited, if their integration into an existing 
                                                   
1 The mobilSoft project is funded by the Bavarian Government under 
grant number IuK 188/001. 

network of control functions, deployed on a highly dis-
tributed network of control units, cannot be handled in a 
managed and predictable way. Architecture Description 
Languages (ADLs) [3, 4, 5, 6] provide promising con-
cepts to represent central aspects of the SW-archi-
tecture to support the designer during the design of func-
tions and during the process of integration. However, in 
the automotive domain an isolated view on the SW-
architecture is not satisfying; rather an appropriate order 
of abstractions is necessary to interconnect the SW-
architecture and the HW-architecture. Each level should 
support the designer in answering questions with respect 
to compatibility management, diagnosis, verification and 
test. 

This paper contains an introduction to the automotive-
specific modeling language CAR-DL, which incorporates 
a newly reworked order of abstraction levels. The CAR-
DL builds upon prior developments of automotive rele-
vant modeling languages such as AML [7, 8, 9], EAST-
ADL [10, 11, 12], and SAE-AADL [13]. It supports the 
representation of SW-/HW-architectures on subsequent 
abstraction levels. But in contrast to the preceding mod-
eling languages, the CAR-DL relies on a clearly simpli-
fied order of abstractions, it incorporates less but more 
intuitive modeling concepts, and it supports a seamless 
top-down information flow. 

  
Figure 1: Abstraction and Concretization of Models 
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The system under consideration is described by a set of 
domain specific abstraction levels (in the following also 
called modeling levels) which are built upon each other. 
Hereby, the modeling levels (resp.) provide self-con-
tained concepts for the representation of the information, 
which are specific for each level.     

The modeling levels are ordered hierarchically starting 
with (very abstract) high levels and leading to (very con-
crete) low levels (s. figure 1). During the transition from 
a higher level to a more concrete level, the model infor-
mation is enriched; i.e. the completeness of the models - 
with regard to the implementation of the system - is in-
creased top down. Thereby, the transition has to be cor-
rect: in spite of the additional information the specifica-
tion of higher levels must be obeyed and completely re-
alized. It must be pointed out that no primary decompo-
sition of the system into subsystems or components is 
made during the transition from one level to another. In-
stead, the system is enriched with specific classes of in-
formation on each level, respectively.   

Due to the fact, that each level defines its own aspects 
which have to be taken into consideration, this system of 
modeling levels is a basis for a systematic design proc-
ess of software for embedded automotive systems. 

The paper contains a survey of the CAR-DL. In section 2 
an automotive specific order of modeling levels is intro-
duced. At each level corresponding modeling constructs 
of the CAR-DL and their semantics are described in an 
own section. At the end of the paper a conclusion and 
an outlook on future work is given. 

 

2. CAR-DL MODELING LEVELS 

For the structuring of the development process, four lev-
els were identified, namely: 

1. service level 

2. functional level 

3. logical cluster level 

4. platform level  

Each level abstracts from specific aspects of the system 
under consideration. Hence the lowest level – the plat-
form level – is the most concrete one; it mainly abstracts 
just from the actual program code by describing the sin-
gle tasks of the systems. Clusters in the next higher 
level – the logical cluster level – do not consider the 
technical runtime environment. Furthermore functions on 
the functional level abstract additionally from questions 
concerning distribution. Finally, services on the service 
level do not require – in general – completeness condi-
tions with respect to all possible inputs and outputs; they 
only focus on its characteristic input and outputs (s. Fig-
ure 1). 

Figure 2 illustrates the most important modeling ele-
ments which correlate with the order of abstractions de-
picted in Figure 1. Beyond, essential interrelationships 
between the modeling elements are shown.  

 

 
Service Function

Cluster Task

1..* 1..*

providedBy

1

1..*

distributedTo

1..* 1

implementedIn

Figure 2: Interrelationships between Modeling Elements 
on different Levels 
In the following four sections, the individual modeling 
levels are described in more detail. 

 

3. THE SERVICE LEVEL 

Starting point of the software development process typi-
cally is a (more or less) complete collection of require-
ments being documented in an arbitrary way (e.g. textu-
ally or by means of use cases). The requirements are 
not or only loosely related to each other, i.e. it is difficult 
to identify unwanted interactions or contradictory re-
quirements. On the service level the majority of the re-
quirements are now formalized consistently and related 
to each other in order to detect these contradictions and 
interactions. 

The aim of the service level is the consolidation and the 
precise specification of requirements that describe the 
characteristic system behavior. Here, characteristic sys-
tem behavior depicts the behavior that is visible for the 
user (which does not only refer to a human user but also 
to another system). Among all requirements that have 
been acquired so far, those ones describing the charac-
teristic system behavior are chosen, formalized, and re-
lated with each other. The formalization of the system 
behavior by means of services and relationships be-
tween services allows for the detection of contradictions 
and behavioral conflicts.  

The design decisions on this level consist of both, the 
specification of the system boundaries and the specifica-
tion of the inputs and outputs (= actions and reactions) 
of the system under consideration. The services can be 
constructed step by step on basis of composition opera-
tors on this level. Please note, that the behavior is speci-
fied by a pure black box view. Inputs and outputs are 
described in a quite abstract way – that is to say: as they 
are interpreted by the users. However, the representa-
tion of data (how it is processed by the realization of the 
system) is not considered so far. The complete definition 



of the overall system behavior is not aim of this level. 
The system behavior is only partially defined, i.e. the 
behavior is not defined for each possible input se-
quence. The totalization is done on the subsequent func-
tional level.  

On the service level, it is out of interest which subsystem 
provides which services; also a decomposition of the 
system is not done up to now. Furthermore, it is not im-
portant which user generates which input and which user 
consumes which output. Figure 3 represents the system 
on the service level graphically. 

 

Figure 3: Black-Box-View of the System on the Service 
Level 

Information Flow within Modeling-Levels  

• Functional Level :  
The services specified on the first modeling level 
are realized by the interplay of the functions on 
the functional level. Between functions and ser-
vices there is a n:m-relationship, i.e. one or 
more services can be provided by one or more 
functions (in latter case, the interplay of several 
functions provides the service). 

Modeling Elements 

Figure 4 depicts a metamodel of the service level. The 
main important modeling elements are: 

• Service: 
Services are finite, causal sequences of Actions. 
They own QualityAttributes which for example 
can describe timing properties or reliability re-

quirements. Services are hierarchical con-
structs, i.e. they can be further decomposed into 
services again.  

• Action: 
An Action can be either an Event (with no time 
specification) or an Activity. An Activity has a 
well-defined Duration. Actions are elementary 
and expose visible system interfaces to the envi-
ronment of the system. 
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Figure 4: Metamodel of the Service Concept  

Benefits of Service Level  

• The detection of contradicting requirements is 
possible.  

• Due to the formalization, the characteristic sys-
tem behavior can be simulated.  

• Due to the formalization of the requirements 
(and their simulation) the accordance with the 
stakeholders’ opinion may be easily validated.  

• The reuse of services – i.e. of characteristic sys-
tem properties – is supported.  
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Actions: A,B,C,D  
Services: A AND B => C; C AND B => D  



4. THE FUNCTIONAL LEVEL 

So far, the focus lied on a consistent, but not necessarily 
complete, description of the characteristic behavior. On 
the functional level, the behavior will now be totalized 
and defined completely and deterministically (i.e. the 
system provides a well-defined predictable output for 
each possible input sequence). Additionally, a decompo-
sition into smaller pieces – again: functions – is done on 
the functional level (= hierarchical decomposition).  

The design decisions on this level are limited mainly to 
the identification of functions, the determination of their 
granularity and the mapping of actions to abstract data 
types. The functions have to be specified in a way, that 
their interplay realizes all services which have been de-
fined on the service level. The system is now presented 
as a network of (hierarchical) functions. 

On this level the assumption holds that the complete 
system does not have to be distributed to different run-
time environments. It is ideally assumed that there exists 
a monolithic runtime model, i.e. one single synchronous 
and undistributed runtime model. The execution is con-
trolled by global clock and the communication is as-
sumed to consume no time. Aspects regarding the dis-
tribution of functions are not considered up to the logical 
cluster level. Figure 5 shows a schematic diagram of the 
functional decomposition of a system. 

Information Flow within Modeling-Levels 

• Service level: 
One or several services on the service level are 
related to one or more functions on the func-
tional level, i.e. that a service can be established 

by several functions, or a function can provide 
several services. The actions of the service level 
are related to abstract data types of the func-
tional level. 

• Logical cluster level: 
On the logical cluster level, several functions of 
the functional level are grouped to clusters. 

 
Modeling Elements 

The main elements on this level – as shown in the meta-
model of Figure 6 – are: 

• Function: 
The Function is the central concept of this level. 
A Function can again consist of Functions (= hi-
erarchical function). A Function which is not de-
composed any further is called an elementary 
function.  

• Variable: 
Variables are related to Functions. On the one 
hand, they can describe the interface (Function-
Port), on the other hand they can represent the 
internal state of the function (State) due to their 
assignment.   

• Type: 
Each Variable has a specific Type.  
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                                                          Figure 5: Functional Decomposition of a System 
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Figure 6: Metamodel of the Functional Level  

Benefits of the Functional Level 

• The behavioral specification is totalized.   

• The system can be simulated.  

• The reuse of functions, in particular the integra-
tion of legacy, is possible.  

 

5. THE LOGICAL CLUSTER LEVEL 

Software that typically is deployed in embedded automo-
tive systems runs in asynchronous tasks which are ad-
ministrated by an operating system. Additionally, the 
software is typically distributed over different runtime 
platforms (CPU including the operating system). How-
ever, up to the functional level (included), the assump-
tion holds that the system runs on a synchronous run-
time platform as a whole, i.e. there exists a global sys-
tem clock which allows a totally deterministic, parallel  
– or alternatively sequential – execution.   

This assumption is now abandoned on the logical cluster 
level. Here, we switch to an asynchronous runtime 
model. Thereby more flexibility for the implementation of 
the software is yielded; the asynchronous runtime plat-
form corresponds to a communication structure as it is 
typical for embedded automotive systems. Due to the 
fact that the synchronous runtime platform is a special 
case of the asynchronous one, the model of the cluster 
level can be implemented on synchronous communica-
tion structures, too. Similarly, realistic conditions under 
which the software has to operate are taken into consid-

eration; i.e. the fact, that resources such as computing 
time and memory are not available in an unlimited quan-
tity is made allowance. 

The aim of the logical cluster platform is to partition the 
system into distributable units (= clusters), i.e. to struc-
ture the functions specified at the functional level, and to 
combine them to clusters. This has to be done in an 
adequate manner so that these can be a usable basis 
for the physical distribution which takes part on the sub-
sequent level (namely the platform level).  

Each cluster is a self-contained unit with well-defined 
communication interfaces. The functionality within these 
clusters is not of major interest as this has been done on 
the functional level. Instead, more attention is drawn to 
interface specifications to obtain distributable units. 
These units stem from a combination of functions by 
considering the question when these units have to be 
executed. Furthermore, the required resources (i.e. 
available machine time and memory consumption) have 
to be specified in a way that can easily be transformed 
into the concrete tasks of the respective runtime plat-
form (on the logical cluster).  

Major design decisions made on this level are on the 
one hand, at which points the catenation between func-
tions has to be disconnected. And on the other hand, the 
determination of the timings defining the scheduling of 
units is a further design decision. Alternatively, it has to 
be stated when the inputs have to be available from 
other units. The formation of clusters can be influenced 
by the following criteria, for example:  

• Existent hardware: hardware architecture, con-
nected sensors, actuators, bus systems (bus to-
pology) 

• Performance / CPU-load / bus load  

• Safety and reliability 

• Reuse for other systems (� product lines) 

• Legacy which has to be integrated 

• Maintainability 

• Placing of orders to suppliers 

• Scalability 

Depending on which criteria have the highest priority, the 
clusters turn out differently concerning both granularity 
and the kind of formation.  



On the logical cluster level, the system is represented as 
a network of distributable units which we call clusters. 
This view on the overall system can also be seen as 
“logical deployment”. 

Figure 7 describes schematically the transition from the 
functional level to the logical cluster level. 

Information Flow within Modeling-Levels  

• Functional level: 
The functional network that was determined on 
the functional level is clustered in a new manner 
by considering additional criteria. Functions are 
grouped to clusters; function ports are related to 
cluster ports. 

• Platform level: 
The clusters are related to individual tasks. Sev-
eral clusters can be related to one task.  
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Figure 8: Metamodel of the Cluster-Level 

Modeling Elements 

Figure 8 shows the metamodel, which defines all model-
ing elements on the logical cluster level. These are: 

• Cluster: 
Clusters are elementary units on this level. They 
do not have a hierarchical structure. In a Clus-
ter, grouped functions are executed sequentially. 
A cluster has a ControlSchedule which deter-
mines which cluster has to be called after an oc-
curring event, or alternatively, after a detected 
timeout.  

• ClusterPort: 
Each cluster can have an arbitrary number of 
ClusterPorts.  

• Connector: 
Connectors connect two ClusterPorts, respec-
tively, and describe – together with the Cluster-
Ports – the CommunicationSchedule that takes 
place between these ClusterPorts. 

Benefits of the Logical Cluster Level  

• It provides the basis for accurate calculations 
concerning time and memory consumption at 
known runtime platforms.  

• Easy reuse in other systems is possible be-
cause of the platform independence. 

• Optimal partitioning/structuring of the functions 
with regard to the distribution. 
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                                                                  Figure 7: Clustering of System Functions  



6. THE PLATFORM LEVEL 

On the previous levels, the system was developed 
widely independently from the hardware. The hardware 
was only taken into consideration if it influenced the be-
havior crucially. This was motivated by reuse issues. On 
the platform level the hardware independence is aban-
doned and the system is adapted to the real hardware. 
The units detected on the logical cluster level are em-
bedded in the hardware environment which is abstracted 
by software (= drivers).  

Design decisions that are typically made on this level 
comprise the mapping of clusters to controllers or tasks, 
and their scheduling and the realization of the communi-
cation between the clusters. This realization must be 
done according to the required resources, stated on the 
logical cluster level on the one hand, and the availability 
of resources on the platform level on the other hand. 
The concrete technical data types, the signals and bus 
messages are defined and the interfaces between clus-
ters and hardware are adapted accordingly. The system 
now consists of communicating hardware components. 
The behavior of each component is determined by clus-
ters and drivers.  

In Figure 9 a view of a system on the platform level is 
shown. 

 

Figure 9: Platform View of a System  

 

Information Flow within Modeling-Levels  

• Logical cluster level: 
The logical clusters on the logical cluster level 
are related to the tasks on the platform level. 
Here, the ControlSchedules of the logical cluster 
level have to be observed strictly.  
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Figure 10: Metamodel of the Platform Level  

 

Modeling Elements 

Modeling elements at the platform level are shown in 
Figure 10 and described as follows: 

• ComUnit: 
Communication units (ComUnits) represent the 
most important hardware parts of an embedded 
system. These can be Actuators, Sensors, and 
ControlUnits. 

• ComConnection: 
The communication connections (ComConnec-
tion) connect the communication units with each 
other. Hereby, a distinction between buses and 
point-to-point connections is made.  

• OS: 
OS represents an operating system that can run 
on one controller. The operating system takes 
care of the memory management, executes the 
tasks, and poses an interface to the communica-
tion ports by means of an API. 

• ComPort: 
A ComUnit can communicate with another 
ComUnit through a ComConnection by means of 
a communication port (ComPort).  
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Benefits of the Platform Level  

• The systematic consolidation of independently 
developed software and hardware can be done 
mainly automatically.  

• Exact guidelines for the technical implementa-
tion of software functions into program code are 
given up to now. The specification is detailed 
enough for automatic code generation. 

 

7. CONCLUSION 

The design approach introduced in this paper aims at a 
systematic structuring of different design decisions. 
Each of the four modeling levels – service, functional, 
logical cluster and platform level – facilitates methodi-
cally specific design decisions which have to be con-
cerned in the respective level. The designer’s main ad-
vantage using such an approach of design methodology 
lays in the well coordinated stepwise refinement of the 
system construction. 

The defined abstraction levels build the basis for the 
definition of our architecture description language called 
“CAR-DL”. The formal definition of this design language 
is the main issue in our ongoing research within the pro-
ject “mobilSoft”. Special emphasis lays on a formal de-
scription of the transition from one level to the subse-
quent one. Thus the design language itself contains and 
defines constructs and dependencies for an integrated 
design methodology.  

With today’s development processes we often face a 
gap between the (usually) textually performed require-
ments engineering and the model-based design. Within 
the “mobilSoft” project we are aiming at a seamless 
transition between these two development tasks. The 
services on the service level seem to be a promising ap-
proach to tackle this problem. Together with the re-
quirements engineering competence center of our chair, 
we are working on a continuous (model-based) devel-
opment process. 

Moreover, safety and reliability are of highest priority for 
automotive software systems. Validation and verification 
activities of these systems are therefore a major task 
during the development process. However, the validation 
and the verification of an implementation must be traced 
back to the actual (user) requirements to really confirm 
the accurate behavior of the system under considera-
tion. As shown above, the introduced modeling levels 
comprise a stepwise refinement of requirements, starting 
with the definition of services. Furthermore, each level 
specifies requirements which must be fulfilled on the fol-
lowing level(s). The integration of techniques for test and 
verification in the introduced design approach is there-
fore another major consideration for our future work.  

We believe, that a well structured and incremental de-
sign approach as introduced above will lead to more de-
pendable systems and also reduce over-all life-cycle 
costs of embedded automotive systems. The well de-
fined design steps will increase quality since smaller de-
sign steps may be less error-prone. An integration of 
validation techniques in the early phases of development 
– e.g. on service and functional level – will lead to an 
early detection of errors. Finally the separation of con-
cerns in different abstraction levels simplifies the reuse 
of design models, for example if in a new line of produc-
tion the hardware environment of the system has 
changed.  
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