
A Generic Framework for Negotiations and Trading in Context Aware Radio
E. Mohyeldin1, M. Dillinger1, M. Fahrmair2, W. Sitou2 and P. Dornbusch2

1Siemens AG, St. Martin Str. 76, D-81451 Munich
2Technocal University of Munich, Boltzmann str.3, D-85748 Garching, Germany

eiman.mohyeldin@siemens.com
fahrmair@informatik.tu-muenchen.de

ABSTRACT

The support of reconfiguration requires the existence of
negotiation procedures and trading rules connecting the
device reconfiguration manager with the corresponding
network proxies that will operate between the network
proxies and the managed equipment, and will enable the
exchange of information (e.g. mode availability, access
network capabilities) or the ordering of certain procedures
to take place. The task of the reconfiguration is to gather all
the required software modules and carry out the individual
reconfiguration steps.
However, in the future mobile terminals will have access to
different radio access technologies and utilize different
communication protocols depending on the requested
application QoS. Moreover context aware application
should be developed that can adapt their level of
functionality to dynamic radio resource restrictions like
available bandwidth, delay and link interruptions. Therefore
a generic software framework for adaptation and
reconfiguration is a necessity.
In this paper we propose a framework that supports the
development of customized middleware, reconfigurable
protocol stacks and adaptive application services in the
three main layers of reconfiguration (infrastructure,
application and user layers). The framework is composed of
the following main phases: Profile and context
management, Adaptations decision and trading rules and
Realizations of the technical reconfiguration.
Keywords: ubiquitous computing, context aware, mobile
service provision, 4G, adaptability, reconfigurability

1 INTRODUCTION

Adaptation is a key requirement for future mobile and
ubiquitous systems that envision heterogeneous
environments where system and application functionality
needs to be dynamically adapted to constantly changing
situations like roaming across different radio access
technologies, different device capabilities and user
personalization needs. There are already several different
architectures and frameworks supporting developed context
aware HW/SW-systems (for a good overview see [3]).
However, the important aspect of designing contexts and
adaptation logic itself is typically overlooked. Moreover the
context model and adaptation decision logic are usually

static and hard-coded into the adaptable entities that are
therefore suitable only for implementing relatively small
scenarios within predictable environments. In view of 4G
and ubiquitous systems, though, this approach seems
inadequate, since the environment in which a system’s
functionality can be executed and the context parameters
that may influence it, will not be predictable a priori at the
time that the function is being developed. Generic, re-usable
mechanisms that offer runtime customizable context criteria
and adaptation algorithms therefore are a basic requirement
for developing long-living ad-hoc reconfigurable protocol
stacks or adaptive application services.
In this contribution such a generic software framework for
adaptation and reconfiguration is introduced. The paper is
organized as follows: in section 2 the process model that
allows the design of context awareness is sketched out,
concentrating on the adaptive behavior rather than
discussing implementation details. Section 3 presents an
integrated abstract model for adaptability that is based on
mathematical streams and can be used to formally specify
and design context aware systems taking into account both
aspects of collecting context information and processing it.
This abstract mathematical model then is implemented into
a technical model which, combined with several helper
components and a graphical description technique forms a
generic formal founded framework with precise semantics
in section 4. Section 5 concludes the paper with some
recommendations and outlook for future research work.

2 ABSTRACT MODEL FOR

CONTEXT AWARENESS

Context in an abstracted view is any information that
characterizes a system’s situation and hence equivalents to
the information stored e.g. in a user, terminal or network
profile. Since context is usually defined using an abstract
view of a situation [1], a specific context is always specified
from a certain perspective and describes only the relevant
information from the system’s environment. For example
the user profile could be used as a context describing user
preferences [2]. A user profile that is used in a terminal
would most likely describe the user profile from the user’s
perspective of operating his terminal, including his
preferences. The user profile that is used in a network
management entity would most likely describe the user from

the network point of view, especially his current status,
actions, subscriptions and billing information’s.
A simple context can be modeled using an entity
relationship data model that holds the contextual
information. The model proposed here is more detailed and
differentiates in sensors, context data and interpreters as
proposed in [3] to enrich the static data structure of context
with its dynamic processing information. Sensors observe
the external system environment. They gather information
that describes the system’s situation and their changes and
update the sensor context data according to the system
situation. Intermediate context data in contrast is updated by
interpreters observing the sensor context. Interpreters can
calculate any information that can not directly be measured
with sensors thus forming an abstract (interpreted)
description of the initial physical (sensored) situation. A
change of an intermediate context can of course trigger
other interpreters, resulting in further context data changes
and so on.
Since such a context model not only describes contextual
information but also its sources it has the advantage that
new sensors and interpreters can be discovered and bound at
runtime. The context model itself however is directly
consumed by the context aware system, e.g. for deciding
about a certain reconfiguration based on a specific context
state. Thus the adaptation logic and with it certain context
dependencies are hard coded into the adaptive system, the
logic and results can not be shared among several
subsystems and moreover the adaptation can not be
reconfigured itself (e.g. to meet varying CPU resources).
The model proposed here therefore extends the context
model as defined in [3] by adding not only sources and
computational nodes but also sinks for contextual
information. Adaptation like any other usage of context
information becomes visible (and detectable and replaceable
at runtime) as Actuator elements. Actuators represent parts
of the system that access or observe certain parts of the
context.
Additionally it is also possible to move adaptation logic into
such a context adaptation model instead of being hidden
inside the actuators if the result of an adaptation decision is
just modeled as another context describing how the system
(architecture, functions, behavior etc.) should look like after
the necessary reconfigurations will have taken place
(adaptation context). With this extension adaptation can be
defined as special interpreters that take information from the
initial or intermediate context data elements and compute a
specification of how the new system should look like after
the adaptation.
The complete model for context awareness in this paper
thus is made up of all initial, intermediate contexts and the
adaptation context, the sources for information in form of
sensors and interpreters and at least one actuator that
reconfigures the system according to the description found
in the adaptation context data.

3 MATHEMATICAL MODEL AND

FORMAL DESCRIPTION

Even the adaptation model itself can be such a description
that is modified by sensors and interpreters and then used by
an actuator to reconfigure the adaptation and context of a
system (e.g. by adding a new context or decision logic at
runtime). A model of context adaptation that can describe
its self-reconfiguration is called calibratable model (k-
model). Any specific implementation of a k-model with an
actuator that can read and reconfigure context adaptation
models can serve as a generic framework, because it can be
fed with any other specific specification of a context
adaptation and will reconfigure itself accordingly.
However a common formal founded semantic of the
abstract adaptation model is necessary. Moreover a precise
semantic is the basis for several important software
engineering verification techniques like automated testing,
model checking and theorem proofing.
A mathematical founded base model which consists of
components and channels describing mathematical
functions processing sets of infinite message streams[4][5]
is used. In this base model; systems or subsystems are
described as a network of components that communicate
with each other over channels. Their behavior is specified as
a relation between communication histories of input and
output channels. A communication history is expressed as a
stream of messages. A stream >=< ,..., 21 mmsn

is a finite or infinite sequence of messages Mmi ∈ . *M

is the set of finite, ∞M the set of infinite message

sequences. ωω)(*MM
def
= is the set of timed message

sequences described as infinite Sequence of finite sequences
over M .
The relation between the input (I) and output (O) message
histories

→∈ IF
r

℘)(O
r

describes a specification of visible behavior.
Adaptation in this basic formal model is interpreted as a
change of network components representing the adapted
system, i.e. components or channels can be added or
removed resulting in a change of visible behavior of the
system. However formalizing these kinds of dynamic
changes is complex. Since in principle any model results
from abstraction which is assumed static or at least its
relevance is not changeable. Hence models are static
approximations of reality but using static assumptions,
dynamic can at best be emulated. Adaptation therefore can
only be formalized using a superposition of all possible
structures and functionality as well as a behavior to emulate

a system reconfiguration by switching back and forth
between the adaptation possibilities. One could argue that it
is therefore not possible to formalize adaptation because it is
also sometimes seen as a method to reconfigure a system
into a state that is unknown at specification time of the
system, e.g. by downloading new software modules at
runtime.
However there is a slight but important difference between
the specification (model) of a system and its
implementation. While the implementation is part of reality,
a specification is a model of this and maybe similar realities
by restricting a state of all possible systems down to a
usually still infinite group of systems showing the expected
behavior (the static approximation mentioned above).
Adaptation can thus easily be modeled as a superposition of
states without needing to enumerate or even know each and
every possible adaptation state as long as the switching
behavior between them can be expressed. In the case of the
formal base model this can be defined as schematics
mathematically describing the relation between
communication histories of a set of typed input and output
channels that can filter the output of certain components or
channels that are not active in a certain adaptation state (see
Figure 1 the D0 component filtering out one of two
alternative configurations).
Looking at the formalization it becomes clear that
apparently context adaptation is a purely engineering
construct; since extra functionality is not added (we still
only have channels and components). Structuring certain
behavior changes in a system the way it is expressed within
the abstract context adaptation model and its formal
foundation, however has some clear advantages from a
systems engineering point of view dealing with system
flexibility:

• A clear segmentation and precise switching
mechanism allowing for running a system even if it
is only partially implemented. So not all parts of
the superposition need to be implemented at the
beginning and can be loaded afterwards. Precise
adaptation makes sure no specified behavior is
exposed that is not implemented yet.

• Decoupling communication between certain
components such as sensors using the context
allows for communication of components with
implementations that not even exist at the same
time or which have an availability (like in wireless
or mobile networks) that can not be controlled by
the system itself. So even if a sensor for needed
information is not available at the moment, its last
known value still might be available from the
context.

• Communication API defined for sensor-,
interpreter-, actuator- and context components
ensuring that all current and future components can
establish a very basic communication with each

other (i.e. exchanging context data. Based on this,
enhanced protocols can be negotiated. This allows
for easy expansion of a system with new
components and functionalities that were unknown
to the developer of the system.

4 TECHNICAL FRAMEWORK

Several concepts for dynamically implementing/extending
systems are existing. The most well known concept is
dynamic (late) binding of methods or functions within the
scope of object oriented inheritance or dynamically linked
libraries (DLLs) that are loaded and bound on demand. The
most flexible concept to date however are web services that
allow for changing an active implementation at runtime.
The service itself is specified as a group of similar behavior
technically represented by a transparent access proxy, while
abstracting component (implementation) identities. Services
therefore can be understood as a logical architecture or
network of static interdependencies between all possible
implementations that could be used at runtime to implement
a given task.
Since more than one component implementation can be
used to implement a given service or one component
implementation can be used to implement more than one
service, this process (of binding an implementation to a
service) is sometimes referred to as Design@Runtime [10].
Services are an sufficient technical concept to implement
our mathematical model of adaptation since services usually
are realized using a proxy access component that can act as
a switch between several component implementations and
therefore acts like the adaptation filter component (actuator)
of our abstract model.
However changing our system by switching component
implementations has some invariants in form of the logical
architecture (services), i.e. the fulfilled function, task or
requirements of the given system or subsystem. Restricting
adaptation to the use of services therefore only produces a
partial reconfigurable system.
Realizing total reconfigurability of a system using
adaptation require the extension of the service concept such
that the logical architecture, i.e. function, task or
requirements are changed. This is especially important for
complex adaptive systems, since they are very likely to fall
into the trap of the frame problem [1][6] . In short this is a
well known problem from KI about the difficulties
describing an infinite complex and dynamically changing
world using static assumptions (i.e. models). Therefore over
time some of these assumptions and therefore abstractions
used in a model can get wrong even if they were valid at the
time a model was constructed. This again leads to false
(compared with reality) decisions [7] like an intelligent
fridge that can not know that the expensive food stored in it

is only used for tomorrows special occasion party and needs
not be ordered again if used up.
Even if the problem is not solvable it can be avoided or
circumvented by changing the model that reasons about
reality (i.e. our context adaptation) from time to time to fit a
reality that might have changed. This process is called
calibration and can be seen as an adaptation of the
adaptation itself. However it is obvious that with partial
reconfiguration there is always part of a model that can not
be changed (usually the service proxies that provide
transparent access of varying components that can be bound
at runtime).
The technical framework therefore relies on total
reconfiguration that is achieved by extending the services
concept with activators. The activator is itself a service that
controls the reconfiguration channels of all possible service
proxies in a given system. The activator can set the
component implementation that is used by a service proxy
or can switch off the service proxy by deactivating its
output channels that are observable from the outside of the
system. The activator also controls its own service proxy.
This way it can hand over the reconfiguration control to any
other activator component implementation achieving a total
reconfigurability without any invariants if necessary, see
Figure 1.
The framework is completed by an implementation of the
context and activator component as well as an adaptation
model sensor. This way any systems adaptation behavior
can be bootstrapped like sketched out at the beginning of
section 3. A description of the concrete adaptation is loaded
from an outside source into the context server using the
adaptation model sensor (e.g. loading from a file). A special
actuator called the model actuator reads the adaptation
model description from the context. Since this model
actuator is implemented as an activator it can activate and
bind any further sensor, interpreter, actuator and context
service that is described in the adaptation model description
loading at bootstrap time.
Also at any later time it is possible to modify (calibrate) this
adaptation description stored in its own context again as
long as the components defining the bootstrap adaptation
are still present and active or were replaced by
implementations of the same functionality.

4.1 Specification and description
techniques

The model of a concrete adaptation behavior stored in its
own adaptation context is described as an XML document.
This document contains information about all sensors,
interpreters, context elements and actuators that are
described as services with their IDs, syntactical and
semantically type information. The syntactical type is
usually composed from an interface description (IDL,

WSDL etc.) but can also contain binding information like
the reference of a component instance. Semantic type
information in contrast can be used for ontology based
searches without specifying a concrete interface. This is true
since the abstract model consist of only four basic roles with
minimum communication APIs, therefore it is possible for
example to search and bind two components with unknown
interfaces. It just needs to be made sure that the two can
communicate with each other. Being one of the four
adaptation model element roles ensures automatically that
the roles can be embedded and used in the adaptation
process even if the functionality and interface protocol is
completely unknown at construction time of the initial
reconfigurable system.
The XML document used for describing flexible adaptation
models can moreover be easily mapped onto the formally
founded mathematical model. Allowing for a wide range of
runtime checks of such specifications, for example testing
for consistency before deploying a new adaptation behavior.
The framework contains as well a syntactical mapping
between the texts based XML description and a graphical
notation, see Figure 2. The graphical specification technique
is utilized for designing support tools for developing
adaptive applications.
The given framework furthermore contains a set of
specialized syntactical transformers that can modify the
original graphical specification resulting in a refined and
clear design specification, for example by automatically
generating indexed sequentializations of complex models or
information folding/unfolding techniques.
This transformators can also be used to generate
descriptions of adaptation behavior that are understandable
by end users, e.g. in the form of device manuals, online help
or editors that allow the user a limited personalization of
adaptation behavior.

5 CONCLUSIONS AND OUTLOOK

The framework presented in this paper is a generic approach
to support all kinds of adaptation in reconfigurable SDR
systems. With its support for calibration even the adaptation
logic itself can reconfigured to avoid typical framing
problems like spontaneous unexpected behavior that can
emerge especially in long running systems or consumer
systems with a large number of users with different and
changing expectations toward a semi-intelligent system.
Besides an environment that allows for changing adaptation
behavior at runtime the framework makes use of a formally
founded abstract adaptation model to allow for sophisticated
and fully automatic tool supported specification,
deployment and documentation of adaptation behavior. All
methods and techniques can be customized according to
experience level of the user even allowing for runtime
personalization of adaptation behavior by the end user.

Since the framework supports generic adaptation such a
personalization mechanism is not limited to modifying a
simple set of rules. Instead it is possible to rearrange
abstract function roles (sensors, interpreters, context and
actuators) that can hide any kind of technical realization.
Therefore it is even possible to mix rule based decisions
with fuzzy logic components or neuronal networks to
customize an adaptation behavior.
Despite this high level of flexibility applications based on
this framework, like the wireless middleware scenario
demonstrator described in [9], the performance and
scalability is far better than comparable middleware
approaches [8].

6 REFERENCES

[1] Christopher Lueg. Operationalizing Context in

Context-Aware Artifacts: Benefits and Pitfalls,
Informing Science Vol. 5 No. 2/2002.
http://informingscience.com/Articles/Vol5/v5n2p043-
047.pdf.

[2] H. Peter Alesso and Craig F. Smith. The Intelligent
Wireless Web. Indianapolis: Pearson Education,
2002.

[3] Anind K. Dey. Providing Architectural Support for
Building Context-Aware Applications PhD thesis,
College of Computing, Georgia Institute of
Technology, December 2000.

[4] Manfred Broy. Compositional Refinement of
Interactive Systems Modelled by Relations. In W.-P.
de Roever, H. Langmaak and A. Pnueli, editors,
Compositionality: The Significant Difference, number
1536 in LNCS, pages 130-149. Springer Verlag, 1998

[5] Manfred Broy and Ketil Stolen. Specification and
Development of Interactive Systems - Focus on
Streams, Interfaces and Refinement. Monographs in
Computer Science. Springer Verlag 2000

[6] Daniel C. Dennett. Cognitive wheels: The frame
problem of ai. In C. Hookway, editor, Minds,
machines, and evolution, pages 129--151. Cambridge
University Press, Cambridge, 1984

[7] Pfeifer, R. and Rademakers, P. (1991). Situated
Adaptive Design: Toward a Methodology for
Knowledge Systems Development. In Brauer, W. and
Hernandez, D., editors, Proceedings of the Conference
on Distributed Artificial Intelligence and Cooperative
Work, pages 53-64. Springer-Verlag

[8] A. Chan, S. Chuang. MobiPADS: A Reflective
Middleware for Context-Aware Mobile Computing.
IEEE Transactions on Software Engineering, Vol. 29,
No. 12, December 2003

[9] DuReau P., Redmill D., Mohyeldin E.; Golubicic Z.;
Hirschfeld R.; Fahrmair M.; Salzmann C.; Dornbusch
P., “Description and Specification of the SCOUT
hardware validators and SCOUT middleware
demonstrator” IST-2001-34091 D4.3.1, 2003-11-02.

[10] M. Fahrmair, C. Salzmann, and M. Schoenmakers. A
reflection based tool for observing jini services. In
Reflection and Software Engineering, number 1826 in
LNCS. Springer Verlag, 2000.

Figure 1: Adaptations schematics

Adaptor

Context3

Actuator

Context1
Sensor1

Interpreter

Context2
Sensor2 Action

Sensor3
Context4

Context5

Sensor4

Profile Processing
Adaptation Decision Adap. Result

Action Parameter

Context data Adap. application

Lookup
Config Dialog

Meta Model
Context

Passive
Personalization

Active
Personalization

Sensors

Interpreters

Actuators
Model Actuator

Access Metamodel
Element

Profile Acquisition

Figure 2: Graphical Notation for Adaptations Model

