
Carp@{ Managing Dynamic JiniTM Systems�

Michael Fahrmair, Chris Salzmann, Maurice Schoenmakers

Technische Universit�at M�unchen

Institut f�ur Informatik

D-80290 M�unchen, Germany

ffahrmairjsalzmannjschoenmag@in.tum.de

November 15, 1999

Abstract

JiniTM o�ers the basic technology to develop distributed systems where the participating clients,
services and their interactions can adapt dynamically to a changing availability and con�guration of
the network.1

Jini can be seen as an dynamic middleware layer on top of the distribution middleware. The tool
Carp@ (say Carpet) is designed to visualize, analyze and control dynamic and distributed Jini sys-
tems. Unlike usual Jini browsers Carp@ allows the observation of services and clients, their intercon-
nections and the messages exchanged between them. The tool extracts an architectural component

model based on components, ports and connectors. Based on this model the structure within the
dynamic middleware layer should be changeable at runtime without changing the code. This paper
describes the tool, its intended usage and the work in progress.

Keywords: Dynamic Systems, Dynamic Architecture, Middleware, Distributed Systems, Jini, Tool Support

1 Introduction

The areas and complexity of applications where computer systems are used is growing constantly. More
and more devices are controlled by computers, nearly all data is meanwhile processed by computers,
and with a spreading Internet more and more computers are interconnected. This leads to a demand to
bene�t of the emerging new possibilities. The main problem is not to be seen as a hardware problem,
but as a software problem: The growing complexity makes it di�cult to develop correct programs that
perform the intended tasks. The problems are mainly caused by the following two characteristics of the
systems to be built:

� The systems are distributed: A system consists of multiple active participants that are interacting
together to perform a certain task. This interaction is achieved by communication between them.

� The systems are dynamic: The architecture, i.e. the presence of the components, their arrangement,
their implementations and their interconnections, but also the roles they take (as e.g. server, service,
client) are changing during the runtime of the system. Due to the need for a high availability of
systems it is often no longer possible to stop or interrupt them for recon�guration.

To tackle these problems, suitable programming paradigms, languages and tools are needed. Middleware
technologies such as Corba [OMG92, Cor] and Dcom [EE98] are �rst approaches in this direction. Jini
is the �rst product that claims to solve the mentioned problems concerning dynamic con�guration. It
o�ers interfaces and mechanisms for components to announce their own abilities, to look for services of

�This work was supported in part by the Deutsche Forschungsgemeinschaft DFG and the BMW-AG.
1Jini and all Jini-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other

countries.



JINI

RMI

JAVA JAVA

NT UNIX

TCP

IP

TCP

IP

Dynamics

Middleware

OS

Transport

Internet

Application

Virtual Platform

Components

Figure 1: The layers of a Jini System

other components and use these in a dynamic network of interacting components. Figure 1 shows how
Jini can be seen as a dynamic middleware layer that relies on the more classic distribution technology
RMI.

Using Jini, it is now possible to develop dynamic, distributed systems in a more or less comfortable way.
But, a lot of the interaction going on in a Jini system is hidden. On the one hand, it is of course desirable
to keep things transparent if a developer wants to focus on the intended application he is creating. But,
on the other hand, it should be possible to watch and analyze these hidden interactions if something goes
wrong (for debugging) or is ine�cient.

The tool Carp@ [Car] was developed to watch and visualize a network consisting of several Jini compo-
nents, together with the possibility to manage such a Jini system, both at runtime. To get a manageable
overall view of the system Carp@ extracts an architectural model of a Jini system at runtime. This
model consists of components, ports and connectors. Components can be Jini clients and services. Ports
are points where services are provided or used and connectors represent di�erent kinds of communication
like method calls or events [SG96, SS99]. The idea is to observe and manipulate a dynamic distributed
system in terms of the architectural model. Carp@ will then transform these changes at runtime to
changes in the Jini system. (see Figure 2 ).

??

Architectural structure:
- Components

clients & services
- Ports 
- Connectors

Runtime structure:
- Jini Services

Carp@ 
Level

Jini
Level

Observation

Figure 2: Observing a Jini System via its Carp@ meta level.

The project was performed until now in a one semester period with a dozen of graduate students and the
authors. Carp@ itself is implemented using Java and Jini to gain additional knowledge and experience
using these technologies.

In this paper, we present in Section 2 the tool as far as it exists today. We conclude with our future work
in Section 3 and also summarize the results in this last section.



2 Observing and Managing Jini Systems with Carp@

Carp@ is a tool to observe, administrate and manage a dynamic network of Jini components with all
their communication relationships at runtime.

In a dynamic ad hoc networking environment, the actual architecture evolves during runtime. Decisions
like choosing an implementation for a component or establishing a communication structure are not
taken at design time but at runtime. Therefore in our opinion there exists an increased need to extract
an architecture description at runtime. This description then can serve as a base to decide about the
e�ect of changes.

Thus Carp@ goes beyond showing simple Jini-services like other browsers do and shows additional
important information that is not available otherwise but is needed to understand the interaction in a
Jini system:

� Clients and Services

Carp@ shows besides the services also the clients of these Jini services and how these components
communicate with each other through so called channels.

� Messages

Carp@ enables the developer to trace the methods calls, together with their arguments, as mes-

sages, that are sent between services and clients for each channel in the system.

� Provided and Required Interfaces

Services can provide multiple interfaces and clients may require multiple services. Carp@ shows not
only these provided service interfaces, but also the required interfaces as ports for each component.

� Locations

An information also not available in general Jini systems is the location of a service or a client. This
is for example important if you want to know where misbehaving clients are located or you want
to see where a performance bottleneck of a system occurs.

The model we have chosen to represent the Jini system is not based on classes and references but is
an architectural model based on the idea of components and connectors [SG96, SS99]. A model on an
architectural level allows the use of related sets of class instances as single components and hides all the
detailed auxiliary classes and objects that are typically used in Java to implement listeners, events and
so on. Another advantage is that a connector, here called channel, is a more abstract item then a simple
interface reference. So it can describe any kind of communication, like method calls or on distributed
events.

Carp@ is divided up in several components. Each observable Jini client or service should contain a so
called Carp@-bean. Each Carp@-bean maintains the data concerning this single component. A model

service looks for Carp@-beans and creates a consistent architectural model of all nearby clients and
services.

To see the information about the Jini system that is collected by the model service, the user starts a
graphical user interface client and can browse through the system as Figure 3 shows. Multiple clients
may exist and are noti�ed constantly about changes while the structure of the Jini-system evolves.

The user interface allows the user to browse through the system to watch all relevant data and to open
up di�erent alternative views.

The most intuitive view is the structure view. It shows a graphical representation of the collaboration
in a Jini system in a ROOM [SGW94] like notation. While the Jini system is running, all the views are
constantly updated and show the current situation. When a new Jini service participates in the system,
(for example because somebody started it in the network watched by Carp@) it simply pops up as a
box. When a Jini service disappears, for example because the service leaves the network, it will be shown
grayed and will �nally be removed. The graphical layout is automatically performed but can be manually
inuenced.

Besides the graphical representation in the structure view, Carp@ shows detailed information in various
lists. Here the user can see not only the memory consumed by a location, but also conventional Jini
information, like groups and service attributes.



Figure 3: The Carp@ System running

With Carp@ the user can also administrate the Jini system by adding, changing and removing Jini
groups and attributes. Besides simple administration Carp@ has management functionality like starting
or stopping Jini components on remote locations, which is very comfortable when more complex test
scenarios have to be set up or when the performance with multiple clients has to be tested.

To make a Jini service or client fully observable by Carp@ the programmer has to use Carp@ bean
components. Because some changes can not be detected by standard reection, some simple programming
guidelines have yet to be ful�lled by the programmer to get full observation possibilities.

3 Conclusion & Future Work

In this paper we presented Carp@, a management tool for dynamic Jini systems. We used Carp@ in a
Jini project and the observation abilities where found very useful.

It is still somewhat unclear how an exact mapping between the object model and the architectural model
should be de�ned. So where should be the boundary around a collection of small objects like a service
objects and several di�erent listener objects to view them as one single component or connector.

Another open issue is the de�nition of system situations where it is \save" to modify the con�guration of
a system. How should constraints be de�ned and enforced that de�ne that it is save to perform a change?
Examples of the con�guration changes would be changing the location of a service, exchanging a service
implementation or changing the wiring between components on the y at runtime. More generalized
solutions to these problem would be more satisfying.

Carp@ is now available in its �rst beta version [Car]. Future work includes the creation of additional
views like message sequence charts [Kr�u] to visualize the message trace for dedicated parts of a Jini
system. Other work will include more speci�c administrative views for lookup services and java spaces.
Management of Jini systems, like migration of services at runtime will be other areas to investigate.



However, making a Jini service or client fully observable by inserting code at the source code level is too
restrictive. Currently we are working on an integration of a class �le transformer that instruments the
code at runtime on a byte code level. Tools like JOIE [CCK98] will be used for this. The advantage
is that also components where no source code is available can be observed completely. The byte code
transformation is done with reective techniques based on a the meta information contained in the class
�le. Because the code must be changed before it is loaded, normal Java reection can not be used. But
before the code instrumentation can be achieved automatically the mapping mentioned above must be
de�ned.

Acknowledgments We would like to thank the whole Carp@ team for a lot of overtime work.

References

[Car] Carp@ Homepage. http://www4.in.tum.de/~carpat/.

[CCK98] Geo� A. Cohen, Je�rey S. Chase, and David L. Kaminsky. Automatic program transformation with
joie. In Proceedings of USENIX Annual technical Symposium 98, 1998.

[Cor] Corba Homepage. http://www.omg.org/corba/.

[EE98] G. Eddon and H. Eddon. Inside Distributed COM. Microsoft Press, 1998.

[Kr�u] Ingolf Kr�uger. Towards the methodical usage of message sequence charts. In Katharina Spies and
Bernhard Sch�atz, editors, Formale Beschreibungstechniken f�ur verteilte Systeme. FBT99. Herbert Utz
Verlag, 1999.

[OMG92] OMG. Object management architecture guide { revision 2.0, 1992.

[SG96] Mary Shaw and David Garlan. Software Architecture { Perspectives on an Emerging Discipline. Prentice
Hall, 1996.

[SGW94] Bran Selic, Garth Gullekson, and Paul T. Ward. Real{Time Object Oriented Modeling. Wiley & Sons,
1994.

[SS99] Chris Salzmann and Maurice Schoenmakers. Dynamics and mobility in software architecture. In Jan
Bosch, editor, Proceedings of NOSA 99 { Second Nordic Workshop on Software Architecture, 1999.


