Sommersemester 2011 Übungsblatt 9 11. Juli 2011

Einführung in die Theoretische Informatik

Abgabetermin: 18. Juli 2011 vor der Vorlesung in die THEO-Briefkästen

Hinweis: Bitte beachten Sie unbedingt die Hinweise zum Übungsablauf und zu den Aufgabentypen auf der THEO-Website (http://theo.in.tum.de/).

Hausaufgabe 1 (5 Punkte)

Sei $a: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ die Ackermann-Funktion.

- 1. Zeigen Sie, dass f(m,n) := twopow(a(m,n)) nicht primitiv rekursiv ist, wobei $twopow(x) = 2^x$ gelten soll.
- 2. Zeigen Sie, dass g(m,n) := max(10 a(m,n),4) primitiv rekursiv ist. Geben Sie dazu eine Definition für g an und begründen Sie.

Hausaufgabe 2 (5 Punkte)

Zeigen Sie die Unentscheidbarkeit der folgenden Mengen und wenden Sie zum Beweis Techniken der Reduzierbarkeit eines Problems A auf ein Problem B an.

- 1. $H_{\Sigma^*} = \{w \mid M_w \text{ hält für alle Eingaben}\}\$
- 2. $C = \{w \mid M_w \text{ berechnet die Funktion } g \text{ mit } g(n) = 0 \text{ für alle n} \}$
- 3. Sei h eine totale, berechenbare Funktion. Dann ist $A = \{w \mid M_w \text{ berechnet } h\}$ unentscheidbar.

Hausaufgabe 3 (5 Punkte)

Sei L eine unendliche Sprache über einem endlichen Alphabet Σ , die von einer Turingmaschine M entsprechend der Länge der Wörter aufgezählt wird (zuerst alle Wörter kleinerer Länge).

Zeigen Sie, dass L entscheidbar ist.

Hausaufgabe 4 (5 Punkte)

Ist es entscheidbar, ob bei der Ausführung

(i) eines LOOP-Programms P (ii) eines WHILE-Programms P auf Eingabe 0 jeder Variable mehr als 1000 Mal ein Wert zugewiesen wurde? Begründen Sie Ihre Behauptung.

Quiz 1

Beantworten Sie kurz die folgenden Fragen:

- 1. Jede unentscheidbare Sprache enthält eine entscheidbare Teilmenge.
- 2. Jede Teilmenge einer entscheidbaren Sprache ist entscheidbar.
- 3. Für jede unentscheidbare Sprache A gibt es eine echte Obermenge, die ebenfalls unentscheidbar ist.
- 4. Aus "A entscheidbar" und " $A \cap B$ entscheidbar" folgt "B entscheidbar".

Tutoraufgabe 1

- 1. Falls A auf B mit Funktion f reduzierbar ist, dann gilt $f^{-1}(B) = A$, aber nicht notwendigerweise f(A) = B. Beweis!
- 2. Falls A reduzierbar auf B und B semi-entscheidbar ist, dann ist auch A semi-entscheidbar. Beweis!
- 3. Sei $B \subseteq \Sigma^*$ mit $B \neq \Sigma^*$ und $B \neq \emptyset$ entscheidbar. Zeigen Sie: B ist reduzierbar auf $\Sigma^* \setminus B$.

Tutoraufgabe 2

1. Seien L_1 und L_2 rekursiv aufzählbare Mengen. Sind die folgenden Mengen L_a und L_b rekursiv aufzählbar? Beweisen Sie Ihre Antwort!

(i)
$$L_a = L_1 \cup L_2$$
 (i) $L_b = \{x \mid x \in L_1 \Leftrightarrow x \in L_2\}$

2. Sei $L_n \subseteq A$ für alle $n \in N$ rekursiv aufzählbar. Zeigen Sie, dass dann auch

$$L = \bigcup_{i \in \mathbb{N}} L_i$$

rekursiv aufzählbar ist.

3. Sei $R \subseteq M \times M$ eine rekursiv aufzählbare Relation über einer Grundmenge M. Zeigen Sie, dass die transitive Hülle R^+ von R rekursiv aufzählbar ist.