Einführung in die Theoretische Informatik

Abgabetermin: 15. Juni 2011 bis 10.15 in die THEO-Briefkästen

Hinweis: Bitte beachten Sie unbedingt die Hinweise zum Übungsablauf und zu den Aufgabentypen auf der THEO-Website (http://theo.in.tum.de/).

Hausaufgabe 1 (5 Punkte)

Betrachten Sie die Sprache $L = L(a^*b^* \mid b^*a^*)$ über $\Sigma = \{a,b\}$. Geben Sie dazu einen minimalen DFA an und verwenden Sie diesen, um alle Äquivalenzklassen von \equiv_L zu bestimmen und jede durch einen regulären Ausdruck zu beschreiben.

Hausaufgabe 2 (5 Punkte)

Wir betrachten die Sprache $L = L(a^*b^*c^*) \setminus \{a^nb^nc^n \mid n \geq 0\}$ über dem Alphabet $\Sigma = \{a, b, c\}.$

- 1. Zeigen Sie, dass L kontextfrei ist, indem Sie eine kontextfreie Grammatik G für diese Sprache angeben. Ein Beweis, dass L(G) = L ist, wird nicht erwartet.
- 2. Geben Sie je eine G-Ableitung für die Wörter abbcc und abccc an.

Hausaufgabe 3 (5 Punkte)

Sei $\Sigma = \{0, 1\}$. Die zwei Operationen Spiegelung (w^R) und Negation (\overline{w}) sind für $w \in \Sigma^*$ wie folgt definiert:

$$w^R = \begin{cases} \epsilon, & \text{falls } w = \epsilon \\ u^R a, & \text{falls } w = au \text{ für } a \in \Sigma \text{ und } u \in \Sigma^* \end{cases}$$
$$\overline{w} = \begin{cases} \epsilon, & \text{falls } w = \epsilon \\ \hat{a}\overline{u}, & \text{falls } w = au \text{ für } a \in \Sigma \text{ und } u \in \Sigma^* \end{cases}$$

Dabei setzen wir $\hat{0}=1$ und $\hat{1}=0$. Wie man leicht (etwa per Induktion) zeigen kann, gelten für diese Operationen auch die Gleichungen $(ua)^R=au^R$ und $\overline{ua}=\overline{u}\hat{a}$ für alle $a\in\Sigma,\,u\in\Sigma^*$. Im Folgenden nehmen wir diese Identitäten als bewiesen an. Wir betrachten nun die Sprache $L=\{w\in\Sigma^*\mid w^R=\overline{w}\}$ und die Grammatik

$$G = (\{S\}, \Sigma, \{S \to 0S1 \mid 1S0 \mid \epsilon\}, S).$$

Zeigen Sie: L ist genau die von der Grammatik G beschriebene Sprache.

Hausaufgabe 4 (5 Punkte)

Die Syntax imperativer Programmiersprachen kann in vielen Fällen durch eine kontextfreie Grammatik beschrieben werden. Wir betrachten hier eine eingeschränkte Sprache, die nur aus zwei *if*-Varianten und einer (unspezifizierten) Anweisung besteht.

1. Zeigen Sie, dass die Grammatik G mit den folgenden Produktionen nicht eindeutig ist, indem Sie für ein Wort mindestens zwei unterschiedliche Syntaxbäume in G angeben:

$$S \rightarrow stmt \mid if \ B \ then \ S \mid if \ B \ then \ S \ else \ S$$
 $B \rightarrow true \mid false$

2. Wir betrachten nun die Grammatik G' mit den folgenden Produktionen:

$$S \rightarrow if \ B \ then \ S \mid T$$

 $T \rightarrow if \ B \ then \ T \ else \ S \mid stmt$
 $B \rightarrow true \mid false$

Entscheiden Sie, ob diese Grammatik ein- oder mehrdeutig ist und begründen Sie.

Quiz 1

Beantworten Sie kurz die folgenden Fragen:

- 1. Kann man mit einem regulären Ausdruck kontextfreie Grammatiken beschreiben?
- 2. Wie kann man entscheiden, ob die Sprache einer CFG endlich ist?

Tutoraufgabe 1

Sei $\Sigma = \{a, b\}.$

- 1. Finden Sie eine Grammatik G, so dass $L(G) = \{w \in \Sigma^* \mid \#_a(w) = 2 \cdot \#_b(w)\}.$
- 2. Zeigen Sie die Korrektheit Ihrer Grammatik, d.h., zeigen Sie, dass für alle ableitbaren Wörter $w \in L(G)$ die Beziehung $\#_a(w) = 2 \cdot \#_b(w)$ gilt.
- 3. Zeigen Sie, dass alle Wörter $(ab)^n a^n$ für $n \ge 0$ in G ableitbar sind.

Tutoraufgabe 2

Sei $\Sigma = \{0, 1, (,), +, *, \emptyset, \epsilon\}$ die Zeichenmenge, aus der reguläre Ausdrücke über dem Alphabet $\{0, 1\}$ gebildet werden. Wir schreiben hier + anstelle von |, um Zeichenverwirrungen zu vermeiden.

- 1. Geben Sie eine kontextfreie Grammatik an, die die Menge der regulären Ausdrücke über dem Alphabet $\{0,1\}$ beschreibt.
- 2. Ist Ihre Grammatik eindeutig? Falls nicht, geben Sie eine eindeutige Grammatik an, die die Bindungstärken in regulären Ausdrücken respektiert (also Konkatenation stärker als + bindet).
- 3. Geben Sie den Syntaxbaum für das Wort 01*0+1 mit Ihrer eindeutigen Grammatik an.

Tutoraufgabe 3

Sei $G = (V, \Sigma, P, S)$ eine kontextfreie Grammatik. Zeigen Sie, dass für alle $\alpha, \beta, u, v \in (\Sigma \cup V)^*$ gilt:

1.
$$\alpha \to_G \beta \implies u\alpha v \to_G u\beta v$$
 (Abschluss von \to_G unter Kontext)

2.
$$\alpha \to_G^n \beta \implies u\alpha v \to_G^n u\beta v$$
 (Abschluss von \to_G^n unter Kontext)