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Übungsblatt 1: Erfolgsfaktoren und Qualitätsprofile 

Aufgabe 1: Erfolgsfaktoren der Softwareentwicklung

Folgende Faktoren beeinflussen die Durchf¨uhrung von Softwareeentwicklungsprojekten. 

Identifizieren Sie weitere wichtige Faktoren und ordnen Sie sie nach der Gr¨oße des Einflusses an.

• Verl¨assliche Sch¨atzungen

• Angemessenes Vorgehensmodell einschließlich Qualit¨atssicherung f¨ur den gesamten Software-Life-Cycle

• Standardisierte Software-Infrastruktur

• Stabilit¨at der Anforderungen

[Antwort: Die folgenden Erfolgsfaktoren stammen aus dem ChaosReport der Standish Group (1995, 1999). Obwohl dieser 
Bericht stark kritisiert wurde, k¨onnen die grunds¨atzlich identifizierten Erfolgsfaktoren als zutreffend angesehen werden. In 
Klammern der Anteil an der Erfolgswahrscheinlichkeit.

• Unterst¨utzung durch die Gesch¨aftsf¨uhrung (18%)

• Einbeziehung der Nutzer (16%)

• Erfahrene Projektleiter (14%)

• Eindeutige Gesch¨aftsziele und Ownership (12%)

• Minimierung der Projektgr¨oße (10%)

• Standardisierte SoftwareInfrastruktur (8%)

• Stabilit¨at der Anforderungen (6%)

• Angemessenes Vorgehensmodell einschließlich Qualit¨atssicherung f¨ur den gesamten SoftwareLifeCycle (6%)

• Verl¨assliche Sch¨atzungen (5%)

• Motiviertes und kompetentes Team (5%)
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Work Sheet 1: Scales and Aggregation

Scales

Assign the measure examples to the correct scale types.

• Number of defects

• Defect types

• Effort in person-hours

• Rating of ease of use between 1 and 5

• Requirements IDs

• Lines of code

• Cyclomatic complexity

• Response time

• Maintenance hours

• Training hours for users

• Recovery time

• Probability that an attacker breaks the system

• Workload/time

• Number of clicks

Aggregation Theory

Informally, aggregation is the problem of combining n-tuples of elements all belonging to a given set
into a single element often of the same set. In mathematical aggregation, this set can, for example,
be the real numbers. Then an aggregation operator A is a function that assigns an y to any n-tuple
(x1, x2, . . . , xn):

A(x1, x2, . . . , xn) = y (1)
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The literature defines additional properties that are requirements for a function to be called an
aggregation operator. However, these properties are not all compatible. Yet, there seem to exist
some undisputed properties that must be satisfied. For simplification, the sets that aggregation
operators are based on are usually defined as [0, 1], i.e., the real numbers between 0 and 1.
However, other sets can be used and by normalisation to this set it can be shown that the function
is an aggregation operator. Additionally, the following must hold:

A(x) = x identity when unary (2)

A(0, . . . , 0) = 0 ∧A(1, . . . , 1) = 1 boundary conditions (3)

∀xi, yi : xi ≤ yi ⇒
A(x1, . . . , xn) ≤ A(y1, . . . , yn) monotonicity (4)

The first condition obviously only is relevant for unary aggregation operators, i.e., the tuple that
needs to be aggregated only has a single element. Then we expect the result of the aggregation
to be that element. The boundary condition cover the extreme cases of the aggregation operator.
With only minimal input there must be the minimum output and vice-versa. Finally, we expect that
an aggregation operator is monotone. If all values stayed the same or increased we want the
aggregation result also to increase or at least stay the same.

Apart from these three conditions, there is a variety of further properties that an aggregation opera-
tor can have. We only introduce three more that are relevant for aggregation operators of software
measures.

The first condition that introduces a very basic classification of aggregation operators is associati-
vity. An operator is associative if the results keep the same no matter in what packages the results
are computed. This has interesting effects on the implementation of the operator as associative
operators are far easier to compute. Formally for an associative aggregation operator Aa the follo-
wing holds:

Aa(x1, x2, x3) = Aa(Aa(x1, x2), x3) = Aa(x1, Aa(x2, x3)) (5)

The next interesting property is symmetry. This is also known as commutativity or anonymity. If
an aggregation operator is symmetrical, the order of the input arguments has no influence on the
results. For every permutation σ of 1, 2, . . . , n the operator As must satisfy:

As(xσ(1), xσ(2), . . . , xσ(n) = As(x1, x2, . . . , xn) (6)

The last property we look at because it holds for some of the operators relevant for software mea-
sures is idempotence. It is also known as unanimity or agreement. Idempotence means that if the
input consists of only equal values, it is expected that the result is also this value.

Ai(x, x, . . . , x) = x (7)

Aggregation Operators
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Grouping
A very high level aggregation is to define a set of groups, probably with a name each, and assign
the inputs to the groups. This allows a very quick comprehension and easy communication about
the results. However, the information loss is rather large.

Rescaling. An often used technique to be able to overlook the large amount of information provided
by various metrics is to change the scale type by grouping the individual values. This is usually done
from higher scales such as ratio scales to ordinal or nominal scales. For example, we could define
a certain threshold value. Above the group is red, below it is green. This is useful for all purposes
apart from trend analysis where it can be applied only in a few cases. It is not idempotent in general
and it depends on the specifics of the rescaling whether it is symmetrical.

Cluster Analysis. Another, more sophisticated way, to find regularities in the input is cluster ana-
lysis. It does basically the same thing as the rescaling described above but with finding the groups
using clustering algorithms. The K-means [?] algorithm is a common example of such algorithms. It
works with the idea that the input are points scattered over a plain and there is a distance measure
that can express the space between the points. The algorithms then works out which points should
fall into the same cluster. This aggregator is not associative and not idempotent.

Central Tendency
The central tendency describes what colloquially is called the average. There are several aggrega-
tion operators that can be used for determining this average of an input. They depend on the scale
type of the measures the are aggregating. All of them are not associative but idempotent.

Mode. The mode is the only way for analysing the central tendency for measures in a nominal sca-
le. Intuitively, it gives the value that occurs most often in the input. Hence, for inputs with more than
one maximum, the mode is not uniquely defined. If the result is then defined by the sequence of
inputs, the mode is not symmetrical. The mode is useful for assessing the current state of a system
and for comparisons w.r.t. measures in a nominal scale. For n1, . . . , nk being the frequencies of the
input values, the mode Mm is defined as

Mm(x1, . . . , xk) = xj ⇔ nj = max(n1, . . . , nk). (8)

Median. The median is the central tendency for metrics in an ordinal scale. An ordinal scale allows
to enforce an order on the values and hence a value that is in the middle can be found. The
median ensures that at most 50% of the values are smaller and at most 50% are greater or equal.
The median is useful for assessing the current state and comparisons. The median M0.5 is defined
as

M0.5(x1, . . . , xk) =

{
x((n+1)/2) if n is odd
1
2(x(n/2) + x(n/2+1) otherwise

(9)

The median of measures in ordinal scale, the division by 2 is not possible. Hence, in this case there
are two medians.

Mean. For measures in interval, ratio, or absolute scale, the mean value is defined. There are
mainly three instances of means: arithmetic, geometric, and harmonic mean. The arithmetic mean
is what usually is considered as average. It can be used for assessing the current state, predictions
and comparisons. The arithmetic mean Ma is defined as follows:

Ma(x1, . . . , xn) =
1
n

n∑
i=1

xi (10)
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For trend analysis, the geometric mean can be used. It is necessary when measures are relative to
another metric. For example, the growth rates of the size of several releases could be aggregated
using the geometric mean. The geometric mean Mg is defined as

Mg(x1, . . . , xn) = n

√√√√ n∏
i=1

xi. (11)

As it uses the product it actually has the absorbent element 0 [?]. Finally, the harmonic mean needs
to be used when different sources are combined and hence weights need to harmonise the values.
An example would be when, in order to analyse the reliability of a system, the fault densities of the
components are weighted based on their average usage. Given the weights wi for all the inputs xi,
the harmonic mean Mh is given by

Mh(x1, . . . , xn) =
w1 + . . .+ wn
w1
x1

+ . . . wn
xn

. (12)

Dispersion
In contrast to the central tendency, the dispersion gives an impression about how scattered the
inputs are over their base set. Hence, we look at extreme values and their deviation from the
central tendency.

Variation Ratio. This ratio is given by the proportion of cases which are not the mode. This is the
only way for nominal measures to have a measure of dispersion. It indicates whether the data is
in balance. This is useful for hot spot identification. The variation ratio V is defined again using
(n1, . . . , nk) as the frequencies of (x1, . . . , xk) by

V (x1, . . . , xk) = 1− max(n1, . . . , nk)
k

. (13)

Maximum and Minimum. Very useful operators for various analysis situations are the maximum
and minimum of a set of measures. They can be used with measures of any scale apart from
nominal. They are useful for identifying hot spots and for comparisons. They both are associative
and symmetrical. The maximum max and the minimum min are defined as follows:

∀xi.y ≥ xi ⇒ max(x1, . . . , xn) = y (14)

∀xi.y ≤ xi ⇒ min(x1, . . . , xn) = y (15)

Range. The range is the standard tool for analysing the dispersion. Having defined the maximum
and the minimum above, it is easy to compute. It is given by the highest value minus the lowest
value in the input, which is only possible in interval scale or higher. It can be useful for assessing
the current state and comparisons. This operator is neither idempotent nor associative. The range
R is simply defined as

R(x1, . . . , xn) = max(x1, . . . , xn)−min(x1, . . . , xn) (16)

Median Absolute Deviation. This dispersion measure is useful for interval and ratio metrics. It
is calculated as the average deviation of all values from the median. This again can be used for
current state analyses and comparisons when the median is the most useful measure for the

4



central tendency. The median absolute deviation is not associative but symmetrical. It is defined
as

D(x1, . . . , xn) =
1
n

n∑
i=1

|xi −M0.5(x1, . . . , xn)|. (17)

Variance and Standard Deviation. For other scales, the most common dispersion measures are
the variance and the standard deviation. It is always the best choice for analysing the dispersion
when the mean is the best aggregator for the central tendency. The standard deviation has the
advantage over the variance that it has the same unit as the measure to be aggregated. Hence,
it is easier to interpret We use it again for analysing the current state and for comparisons. It is
not associative but symmetrical. The variance S2 and the standard deviation S are defined as
follows:

S2(x1, . . . , xn) =
1
n

n∑
i1

(xi −Ma(x1, . . . , xn))2 (18)

S(x1, . . . , xn) =
√
S2(x1, . . . , xn) (19)
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