
Technische Universität München

Management

Dr. Stefan Wagner
Technische Universität München

Garching
11 June 2010

Software Quality

1



Last QOT: Why do we need 
continuous quality control in 
software development?

"Failures are cheaper to fix if catched early."

"To correct the standard of quality assurance 
in any time."

"For maintaining the aggregation 
properties"

2

The most obvious reason for continuous quality control is that you detect 
defects earlier when they
are still cheap to fix. Failures have a specific meaning!

The control loop also helps to adjust your quality assurance approach.

Continuous quality control is not necessary for aggregating properties of the 
software. If this
comment aims more into the direction of integration, it could be reasonable if 
early detection
of problems by continuous integration is meant.

New QOT: "Why is software reliability a random process?"



Measurement 
theory

3

Review of last week's lecture:
Scales
Aggregation operators
GQM



Product
Metrics and

Measurement

Management

Certifi-
cationProcess

Quality
Quality

Quality

Basics

4

We are in the part "Metrics and Measurement".



Quality
measures

Visualisation

Reliability 
models

5

This lecture covers three parts:
Reliability (growth) models
An overview of quality measures (and a classification)
Visualisation of quality measures



Reliability 
models

6



Software reliability

Probability of a 
failure-free operation of a 

software system for a 
specified period of time in a 

specified environment.

7

The standard definition of software reliability adopted by various 
standardisation bodies such as IEEE.

It shows that reliability depends on the definition of failure, that reliability is a 
stochastical concept, 
and that it can only be defined for a specified period and a specified 
environment.

In contrast to hardware, software does not wear off. Hardware can become 
disfunctional just
by mechanical influence. This does not hold for software. Theoretically, 
software could run
forever without any failure. The change in reliability in software comes from 
changing the
software, i.e., from fixing bugs.



Measures

• Probability of failure on demand (POFOD) 
• Mean time to failure (MTTF)
• Mean time to repair (MTTR)
• Availability (MTTF/(MTTF+MTTR))
• Failure intensity
• Rate of fault occurrence (ROCOF)

8

We can find various measures that describe different aspects of reliability in the 
literature.
Most of them come from hardware reliability engineering.
MTTR, for example, is mostly interesting in high-availability systems. 
Otherwise, most software
systems are not optimised for MTTR.
ROCOF is a synonym for failure intensity



Reliability

Failure intensity

Time

Reliability changes

9

In reliability models, the most commonly used measure is failure intensity. It 
describes the
number of failures in a certain time period. Interesting is also to use other 
means to describe
time periods. For example, in a telecommunication system, failure intensity is 
often defined
as failures per incident where an incident is one call made with the system.

Reliability is the reciprocal value of the failure intensity.

This reliability growth over time only occurs if we fix defects.



Process

Requirements Design and
Implementation Test

Definition of 
required reliability

Development of
operational profiles

Test planning

Test execution

Usage of failure data
for decision making

10

This is the process for software reliability engineering in a nutshell. The 
development process
is reduced to requirements specification, design and implementation, and test. 
During the
requirements specification, we define the required reliability of the software to 
be built. Along with
it, we develop operational profile, i.e., how will the users work with the system? 
During design
and implementation we start with planning tests according to the operational 
profiles. The test
plan as well as the goal of the required reliability is the basis for executing the 
tests. The failure
data from the tests (usually system and field tests) is used as basis for decision 
making.
This is usually called the "When to stop testing?" problem. When is testing 
finished? When have
I reached the required reliability?
Testing less or more can be expensive!



Reliability theory

System

Input space

Output space

in

i1

correct
incorrect

11

As we need to analyse the current level of reliability and how it will change, we 
need a theory of
reliability that is the basis for the analyses.
The simple model that is usually employed sees the system as a function that 
transforms values
from the input space to the output space. The output space is divided into 
correct and incorrect
values. If the system outputs an incorrect value, a failure occured.
The transformation from the input to the output is (usually) deterministic for a 
software system.
Where stochastics come in is the distribution of the input values. What input 
values are put into
the system is seen as a random process.



Reliability growth model: Musa basic
Parameter:

v0: total number of faults

λ0: initial failure intensity

μ(t): number of failures up to time t

λ(t): failure intensity at time t

12

There are various models that formalise this random process based on 
different assumptions.

A well-known model is the Musa basic model developed by John Musa. This 
model assumes there
is an exponential change of the initial failure intensity over time that is 
influenced by the total
number of faults that were initially in the system.

This allows to calculate the number of failures that will have occured at a time 
t in the future as
well as the failure intensity that the system will have at time t.



µ(10) = 100(1− exp(− 10
100

× 10)) = 63 failures

λ(10) = 10× exp(− 10
100

× 10) = 3.68 failures/hour

Reliability growth model: Musa basic

We have a program with an initial failure intensity of 10 
failures/hour and 100 faults in total. 
How many failures will have occured after 10 hours? How 
high is the failure intensity afterwards?

13

This example is simple, because we calculate only with hours. The difficulty in 
practice usually
lies in finding a useful measure for time, because only passing clock time does 
not make failures 
occur. The system has to be used. Therefore, the notion of time should 
represent this usage
somehow. For a web server, this could be number of requests served.

In practice, we do not have number of initial failure intensity and total number 
of faults. This
is either done by estimating from earlier, similar projects, or by using the first 
data from system
tests to fit the failure intensity curve. This is done, for example, using the least 
squares method.



Quality
measures

Reliability 
models

Visualisation

14



Quality
measures

15



Exercise

• Each of gets names of quality measures.
• Look on the Web for information.
• Make yourself an expert and find an example.
• Which quality attribute does it measure?
• 15 Minutes
• You will present each metric.
• Assign it to one of Garvin's quality 

approaches (on the white board).
• You can discuss with your neighbours.

16

34 measures



17

The assignment of measures to the user, product, or process level is not always 
easy. Some measures,
such as "Lenght of method" clearly measure directly something of the product. 
Others, such as
"Percentage of successful bug fixes" says mostly something about the process, 
but also about the
product.



Quality
measures

Reliability 
models

Visualisation

18


