Technische Universitat Mijnchenm

Software Quality
Management

Dr. Stefan Wagner

Technische Universitat Munchen

Garching
28 May 2010

Some of these slides were adapted from the tutorial "Clone Detection in

Practice” from
F. Deissenbock, B. Hummel, and E. Juirgens given at ICSE'10.

Last QOT: On which quality
attributes do reviews have the most
direct influence?

"Usability"

"Readability”

"Performance”

Reviews might have an influence on usability, depending on what is actually reviewed.
Reviews of GUI mock-ups,

for example, might have a huge influence.

Readability is highly influenced in the case of code reviews.

Performance problems are actually very hard to detect with reviews.

New QOT: "Why is cloning a problem?"

wt'w,vn

Review of last week's lecture

Metrics and

‘ "’v‘@k
‘.v\' .

\‘\\h\.\-‘?'.l’l.

Measurement

Certifi-

cation ?L

Management a

We are still in the part "Product Quality".

Code
analysis

Quality
evaluation

5

This lecture covers code analysis, mostly bug pattern tools and clone detection, as well as
an approach for quality evaluation.

Code

analysis

With code analysis, | mainly refer to automatic static analysis. Dynamic analyses are not
explicitly covered in the following.

Abstract
Interpretation

Control Flow and
Data Flow Analysis

Bug Pattern

Style Checker (Coding Guidelines)

Analysis of software by software

But no execution of the analysed software
Wide spectrum

Efficient, but many false positives
Examples

= Checkstyle

= FindBugs

= PMD

= Klockwork

= Coverity

Bug Pattern
Tools

On average |/4 of faults during
development

/ person-hours for configuration
<0.5 person-hours per fault

Empirical studies with Cirquent and 02 Germany
Subset of defect types of reviews

Different defects as tests

Problem: High level of false positives, tends to improve

Example: FindBugs

| String input = textField.content;
) > if (input == expectedString) {

F indBlfgS

.)
l)CC{IUSC‘ It 8 C.’.lS_Y

int someMethod(int y) {...}

if (a) {someMethod(b)} ...

A well-known and very usable example of Java analysis tools is FindBugs from the
University of Maryland.

The two code snippets are examples of bug patterns that FindBugs can detect:
String comparison with == and missing usage of return value

10

Code cloning

Class A Class B

11

Code clones are parts of a source code that were copied and pasted. In
principle, it is a normal,

exploarative approach to look for code that does something similar as what
you want to implement.

You should, however, refactor common code to a method or class that is used
in both places.

If this refactoring step is omitted, we have clones in the code.

Code clone example

/1 Utilities For arrays of elements I Utilities For arrays of elements
public String showElements{ModelElement[] elements, String nomsag) { | public String showElements{ModelElement[] elements, String nomsg) {
boolean found = false; boolean found = false;
StringBuffer res = new StringBuffer(); StringBuffer res = new StringBuffer();
if (elements !'= null) { if (elements = null) {
Index.getInstance().setCurrentRenderer(Index.getInstance().setCurrentRenderer(
FlatReferenceRenderer.getInstance()); FlatReferenceRenderer.getInstance());
for (int i =0; i < elements.length; i++) { for (int i =0; i < elements.length; i++) {
ModelElement el = elements[i]; ModelElement el = elements[i];
res.append(showElementLinkiel)). append(HTML.LINE_BREAK); res.append(showElementLinkiel)). append{HTML.LINE_BREAK);
found = true; found = true;
Index.getInstance().resetCurrentRenderer(); Index.getInstance().resetCurrentRenderer();
h h
if {Ifoun &R nomsg !'= null %& nomsag.length{) > 0) { if {Ifound &2 nomsg.length() > 0) {
Fes.appenu mire.auanesy| uomsg}); res.append(HTML ' italics(nomsg));
return res.toString(); return res.toString();
¥ h
12
Clone

e Sequence of normalized statements

e At least one other occurrence in the code

Exact clone
e Edit distance between clones =0
Inconsistent clone

e Edit distance between clones > 0 & below given threshold

(Inconsistent) Clone Group

e Set of clones at different positions (with at least 1 inconsistent clone)

e Semantic relationship between clones

Unnecessary size increase

Class A Class C Class D

Class E Class F

— Class G Class H

13
The main and most direct problem of code clones is the unnecessary size
increase.
With many clone groups, which consist of several clones, the code is
significantly larger than it
needs to be.

This additional, unnecessary code needs to be read, comprehended, changed,
and tested.

Example: Inconsistent clones

Munchener Ruck
Munich Re Group

LV 1577

14

Furthermore, clones can become inconsistent if one of the clones is changed
but not the others.

This can be intended if one clone has to conform to different requirements. If
this was not intended,

however, it might be a real defect in the system.

We analysed this in more detail with systems from Munich Re, LV 1871, and
TUM.

Class A Class B

—_—

15
These are two clones of a clone
group.

Class A Class B

—_—

Inconsistent!

Unconscious?

Defect?

16
One of these clones was changed. In the study we then asked the developers:
Was the change done conscious of the clone?

Does the inconsistency constitute a clone?

Class B

17
Of all clones we found in the analysed systems, 52% contained inconsistencies.
Of these inconsistent clones, 28% were changed unconscious of the copies.

Of the inconsistent clones that were changed unconscious of the copies, 50%
were real defects.

Every second unconsciously
inconsistent change constitutes a fault.

Jurgens et al., ICSE'09, 2009

18

Group work

Group |:How do the types of defects found
with automatic static analysis compare to
defects found by tests or reviews?

Group ll:When in the development process
should automatic static analysis be applied
(e.g., before or after which other methods,
how often)?

|0 minutes, cards
Short presentation

19

Static analysis finds largely different defects than tests, but many defects also
found in a review.

If there is a good tool that finds a specific type of defect it often finds it more
thoroughly than a review.

Static analysis is mostly suitable for finding readability problems.

Static analysis should be applied as often as possible, e.g., in the nightly build
or better directly in

the IDE of the developer. It is a good entry criteria for a code inspection to save
the inspectors the

time for noting defects that a tool could detect cheaper.

Clone detection: Processing steps

Storage | ‘ | |

loa

~

T

tokenise
&
normalise

—

find duplicates |

20
First, the code is loaded from the storage system.

Second, the code separated into tokens and these tokens are normalised, e.q.,
identifier names are

removed.

Third, in the normalised tokens, duplicates are detected.
Fourth, the duplicates that constitute clones are extracted.
Fifth, the extracted clones are suitably visualised.

Normalisation example

String

readFileUtf8(File file) {

FilelnputStream in = new FilelnputStream(file);

byte[] buffer = new byte[file.length()];

in.read(buffer); in.close();

return new String(buffer,,,UTF-8%);

String

FilelnputStream in = new FilelnputStream(file);

readFileUtf1 6(File file) {

byte[] buffer = new byte([file.length()];

in.read(buffer); in.close();

return new String(buffer, ,, UTF-16%);

|
idO id 1 (id2 id3) {

id0 id2 = new id0(id4);

idO[] idl = new idO[id2.id3()];
id0.id 1 (id2); id0.id3();

return new id0(id |, lit0);

}

id0 id | (id2 id3) {
id0 id2 = new id0(id4);
idO[] idl = new idO[id2.id3()];
id0.id 1 (id2); id0.id3();
return new id0(id |, lit0);

This examples shows why normalisation is necessary.

Here the method that reads a UTF-8 file was copied and changed so that it

reads UTF-16 files.

In essence, this still is a copy and if there is a change in readFileUtf8, there is a
high probability

that readFileUtf16 also has to be changed.

Hence, identifiers and literals are normalised to "id" and "lit" so that the
duplication finder

is still able to find them.

21

Normalisation example

String readFileUtf8(File file) { —id0 id 1 (id2 id3) {
FileInputStream in = new FilelnputStream(file);] id0 id2 = new id0(id4);

byte[] buffer = new byte[file.length()]; ::g[i]dild(i'd;)ﬁiz\g iijg([)ifﬂ.id%)];

in.read(buffer); in.close(); return new id0(id1, lit0);
return new String(buffer, ,, UTF-8); }
) —
| [id0 idT(id2 id3) {
B iId01d2 = new 1d0(id4);
String readFileUtf| 6(File file) { —— O =Tew O Zd3);
FilelnputStream in = new FilelnputStream(file); 1 id0.id 1 (id2); id0.id3();
byte[] buffer = new bytel[file.length()]; return new id0(idl, lit0);
in.read(buffer); in.close(); ;
return new String(buffer,,,UTF-16%);
}

Clones contain similar but not necessarily identical code

22

Measures for cloning

* Number of clone groups/clone instances

* Size of largest clone/cardinality of most
frequent clone

* Cloned Statements

— Number of statements in the system being part of at least one clone

* Clone Coverage

— #Cloned Statements / #Statements
— Probability of a randomly chosen statement to be part of a clone

* Redundancy Free Source Statements (RFSS)

— Size of system after (hypothetical) perfect clone removal

23
Different measures for cloning are interesting for different goals.

The number of clone groups and instances shows how many refactorings
would be necessary.

The size of the largest clone or the cardinality of the most frequent clone show
the hot spots.

Clone coverage gives a feeling how big the problem is over the whole system.
RFSS shows the actual size of the system.

Measures example

class Test { °
int doX (int a, int b) {
if (@ > b) { °

return 2*a; }

return 2*b; °

}

int doY (int a, int b) {

return a+b;

}

int doZ (int ¢, int d) {
if (c>d) {
return 2%c; }

return 2*d;

Statements: | |
Cloned Statements: 8
Clone Coverage: 8/1 | = 70%

RFSS: 7

24

Visualisation of
clone detection results

Compare View (~20 LOC) Tree Maps (>1.000.000 LOC)

‘1_.".- —— —_T=ET FW > \
7 B N

. T—

!"W-;w'

Trends over Time
Seesoft View (~400 LOC)

o Y. |
—— ——

m

B

25

Depending on the the purpose of the analysis and the size of the part | want to
look at,

different visualisations are appropriate.

Clone compare view

Cashin,java ‘

}Cashm.kwa

—tryd
* this method should be syr

.

chronzed to avoid Op npleteEvent ocoured before th
synchronized (this) {
il (m_tracelog.icDabugEnabled()) {
m_tracel og.debug("now caling drect1O with param J80S_COR_RETRACT _HI
b
identFicatoniD = m_JxfsATM, drectIO(BOS_COR_RETRACT_HISTORY_GET_EL

il {m_traceloq.isDabugEnabled()) {

m_traced 0g.debug(finish caling drectiO wath paramn JB0S_COR_RETRACT M
b
} "
wakForOperationCompleteWith TimaOut(idantification]D, Thread. currentThread(),
“vendorSpecfiRetractMstoryGetElement”, JDevice xfsDeviceManager ATM_

}
catch (hfsException ex) 4
ffe nrow CashiExcention
throw (CashException) SmartTracelog.creste XiFS_ExTraceloglex,
.gatClass(), CashException.class);

“vendorSpec

'

catch (BaseException ex) {
CashException cashEx = new CashException{ex.getId(), ax.getExtendedErrorCo
If (m twccto-: nshaccmwﬁxceptvorinabbc()) {

PR WERUON _ PSSR ¥ R RN

try{

* this method should be sy mpleteEvent ocC

nchronized to avosd OperationCo

synchronized (this) {
il (m_tracelog.isDeabugEnabled()) {
m_tracelog.debug(“now caling drect1O with param J80S_COR_CHECK
H
identficatoniD = m_JdfsATM, drectIOOBOS_COR_CHECK _CASHTYPES, v
il (m_traceloq.isDabougEnabled()) {
m_tracel og.debug(finish caling drectiO vath param B80S _COR_CHEC

4
wakForOperationCompletaWith TimaOut(dantificationID, Thread.currentThre
“vendorSpecficCheckCashTypes®, Device bfsDeviceManager ATM_DE'

}
cnhh ()x ‘sExcephon e
achiE xcention

thtow (Casrixccpbcn) SmartTracelog.creste XFS_ExTracelog{ex, "vendo
CashException.class);

)
catch (BaseException ex) {
CashException cashEx = new CashExcaption{ex.getld(), ax.getExtandsadEr

If (m traccto-a xshacﬂh:omﬁxcemorimbbd()) {

T N N s AN

26

The clone compare view, here in Eclipse, shows the cloned parts of two classes
next to each other.
It allows a detailed inspection of the the clones.

Clone bars

* Displays cloning information in the IDE
* Helps when working with cloned code

public void testiAssertEqualsNaNFails()
try {
assercEiguals(1.234, Double.NaN, 0.0):
| fmi1lilz:

IR Compars with Sibing 1: DoublePrecsionAssent Test java(33-50)

Chore Class 10 » Compare with Sbing 2: FloatAssertTest java(33-50)
Compare with Sbing 3: FloatAssertTest. java(13-30)

Sibing 1: DoublePracisionAssartTest, java(33-50)

by awwnrrN 5
perassertNaNE i 2. FloatAssertTest, java(33-50)

ol Sibling 3: FloatAssertTest javal13-30)
asserctiguals (Douwbls
fail(): Foous on CloneClass: 12

} catech (AsservionFaili Select this done nstance: DoublePreosionassertTest, java(l3-30)

Clone bars are also shown in an IDE, but directly on the side of the code you
work with.

If you change existing code, this bar warns you that there are clones that you
might have to

change as well.

27

Tree map

Visualisation of

® Structure
® Size

® Redundancy

in a single
picture

28

The tree map is useful to get an overview of how cloning distributes over the
whole system.

The more red a square is, the higher the clone coverage in this class.

29

We use the source code of Apache Tomcat to show you tree map visualisation
of cloning.

|avay

org

30
The top-level package in Tomcat is

org".

Below "org" there is the package
"apache”.

ﬁ

r —

catalina tomcat

jasper
naming

The "apache” package contains several further packages.

parser

l ‘ session

manager

compiler

tagpluging

«miparser

ff'deploy

!
A .
’ | ore '
sernviet
mbeans _

Which in turn contain further
packages.

modeler

Which contain finally Java
classes.

&
-
-
-
-
-

1
J

e
'
I

FE

These Java classes are then overlayed with the degree of clone coverage they
have.

Clones in models |

| Betpiell 'Controlier VID-Rogher *
- iton, Fors | {

r L Vew . o et

B =

=10 x|

REMmS

R

Foady L% odevs

Deissenboeck et al., ICSE'08

36

Cloning is not only a problem in code. Also models contain copies.
We analysed this at MAN Nutzfahrzeuge and their Simulink/Targetlink models.

Simulink/TargetLink models with about 20,000 blocks in 71 files
Identified: 139 clone classes after filtering

Includes clones of library blocks

37% of relevant blocks are part of at least one clone group

Most clones affect several files/transcend several hierarchies

Clones in requirements specifications

Relative blow-up in percentage

129,6

Mean 13,5%

14214,113.4) | 5

108 g 7
...'.' mann S S 52 3 LI 1 0906050404 0 0
L

60,6
32,6
l20'4 .

Jurgens et al., ICSE'I0

37
Also requirements specifications are affected by cloning.
The diagram shows results of a study we did with real world specifications.
Each bar is the relative
blow-up for a specification. The blow-up denotes how much larger the
specification is than it would
need to be without cloning.
The maximum has a blow-up of 11,000 words! But there are specifications with
no or almost no
cloning.
On average, an inspection of the requirements would need more than 2
additional person days
because of cloning.

Cloning also in

models

and

requirements specifications

38

analysis

Quality
evaluation

39

evaluation

Group work

What are useful measures for
quality or specific quality
attributes’

|0 minutes
Cards
Short presentation

41
The results of this group work will be reused in later lectures.

Example:
Average maintenance effort

42

Quality evaluations will be discussed using the example of maintenance efforts.
The average

maintenance effort for the next year would be an interesting measure for
maintainability.

We use public data from the NASA system "CM1".

e Space craft instrument

e Developed in C

To evaluate its quality, we use our existing maintainability model.

Bayesian nets
P(C|A,B)

C
PA) /. P(BIA)
A — B

/ /
T=06 T F
F=04 Low 0.3 0.6

Med 0.5 0.25
High 0.2 0.15

« Cause effect graphs

« Based on Bayesian inference

* Are therefore able to model uncertainty
 Node Probability Table (NPT) for each node
- NxM

* N states in the node

* M product of the cause node states

43

Quality model

Maintenance

./l\.

Implementation Quality Analysis
l assurance l
Modification Testing Comepr.
! |
Appropriateness +‘ :
of comments RAeadlng
Regularity of +

implementation

Size of modules

This is the simplified model we use for the quality evaluation.
It has a reduced activity tree that decomposes "maintenance"” and the factors
are simplified

to just three. A realistic maintainability model contains more than hundred
factors.

Transition to Bayesian net

Maintenance

Implementation Analysis
Quality
\ assurance \
Modification I
Comprehension
Testing /
Reading

Appropriateness
of comments

Size of modules

Regularity of
implementation

45

The activity-based quality model can be directly transformed into a Bayesian
net.

The factors become nodes that influence the activities on which the have an
impact.

The activities than influence their higher-level activities until "maintenance” is
reached.

Adding measures

T e

/

46
The factors as well as the top-level activity need explicit measures.

In the example, we only use automatically measureable measures, because
these are available

in the NASA data set.

Activities Indicators
Maintenance
P TEI56%

Low U ‘95‘ & Average Change Effort
medium g 585 0ss% e e)| 0.0 h
1 o © O
Quality Assurance Implementation
Low H3 :? 3"::;:' Low J‘ :Eg"_?}"ag%
: 317%
Madium | 33.333% Medium g% ?33002
High 1 33 333% High B 55 %% %,
1 L faY
Comprehension Testing Modification
i 10U0% 100 S¥ HIES
Low ngg'j% ow H'_g?};%’ Low 33.333%
i 33.317%
Meadium 1 33 333% Medium g 33 333% Medium 333308
147 o
High 1 33.333% High g 33 333% High Jlg 55 4%%
JaY AN FAN
Code Reading
= TO0%
v $3333% Comment Ratio
Madium 33.333% 24
HIgh ua 33 333% 16
L 7 08
- Measured valuas : 0.2517 |

Facts Appropriateness of / Average Cyclomatic
TT515%

Low l 33333%
st JH 33.317% 0.0
Regularity of o . 334»3-'3_*% [— —{ B e e
T E Hign JEEaeg™ S 8 5

33.333% R 1 TN
Medium 4 33 333% Measurad values - 5.18 |

High g 1“?%2’ Average Module Size

" Extent of Modules
| small

> 00

Medium T T

Lo L o
s 3=
o = o
| rJ rd -
. e Measured values : 33 47

Large

This is the Bayesian net implemented in the tool AgenaRisk.

The difficulty lies in defining suitable node probability tables for all nodes.
With the final net, it is possible to set a desired average change effort and
calculate the most

probable explanation in comment ratio, average cyclomatic complexity, and
average module size.

Alternatively, we can set measured values for these and calculate the
distribution of the average

change effort.

analysis

Quality
evaluation

48

