
Technische Universität München

Management

Dr. Stefan Wagner
Technische Universität München

Garching
28 May 2010

Software Quality

1

Some of these slides were adapted from the tutorial "Clone Detection in
Practice" from
F. Deissenbock, B. Hummel, and E. Jürgens given at ICSE'10.

Last QOT: On which quality
attributes do reviews have the most
direct influence?

"Usability"

"Readability"

"Performance"

2

Reviews might have an influence on usability, depending on what is actually reviewed.
Reviews of GUI mock-ups,
for example, might have a huge influence.

Readability is highly influenced in the case of code reviews.

Performance problems are actually very hard to detect with reviews.

New QOT: "Why is cloning a problem?"

Review
Walkthrough

Inspection

3

Review of last week's lecture

Product
Metrics and

Measurement

Management

Certifi-
cationProcess

Quality
Quality

Quality

Basics

4

We are still in the part "Product Quality".

Quality
evaluation

Code
analysis

5

This lecture covers code analysis, mostly bug pattern tools and clone detection, as well as
an approach for quality evaluation.

Code
analysis

6

Quality
Assurance (QA)

Constructive QA

Analytical QA

Process Standards

Analysing Methods Testing Methods

Dynamic Test

Verifying Methods

Formal Verification

Model Checking

Autom. Static
Analysis

Review/Inspection

Metrics

Anomaly Analysis

Graphs and Tables

Coding Guidelines …

7

With code analysis, I mainly refer to automatic static analysis. Dynamic analyses are not
explicitly covered in the following.

Abstract
Interpretation

Control Flow and
Data Flow Analysis

Bug Pattern

Style Checker (Coding Guidelines)

8

 Analysis of software by software
 But no execution of the analysed software
 Wide spectrum
 Efficient, but many false positives
 Examples

 Checkstyle
 FindBugs
 PMD
 Klockwork
 Coverity

On average 1/4 of faults during
development

7 person-hours for configuration
<0.5 person-hours per fault

Bug Pattern
Tools

9

 Empirical studies with Cirquent and o2 Germany
 Subset of defect types of reviews
 Different defects as tests
 Problem: High level of false positives, tends to improve

Example: FindBugs

String input = textField.content;
if (input == expectedString) {
...

int someMethod(int y) {...}

if (a) {someMethod(b)} ...

10

A well-known and very usable example of Java analysis tools is FindBugs from the
University of Maryland.
The two code snippets are examples of bug patterns that FindBugs can detect:
String comparison with == and missing usage of return value

Class A Class B

Code cloning

11

Code clones are parts of a source code that were copied and pasted. In
principle, it is a normal,
exploarative approach to look for code that does something similar as what
you want to implement.
You should, however, refactor common code to a method or class that is used
in both places.
If this refactoring step is omitted, we have clones in the code.

Code clone example

12

Clone
• Sequence of normalized statements
• At least one other occurrence in the code

Exact clone
• Edit distance between clones = 0
Inconsistent clone
• Edit distance between clones > 0 & below given threshold

(Inconsistent) Clone Group
• Set of clones at different positions (with at least 1 inconsistent clone)
• Semantic relationship between clones

Unnecessary size increase

Class A Class C Class D

Class E

Class G

Class F

Class H

13

The main and most direct problem of code clones is the unnecessary size
increase.
With many clone groups, which consist of several clones, the code is
significantly larger than it
needs to be.
This additional, unnecessary code needs to be read, comprehended, changed,
and tested.

Example: Inconsistent clones

14

Furthermore, clones can become inconsistent if one of the clones is changed
but not the others.
This can be intended if one clone has to conform to different requirements. If
this was not intended,
however, it might be a real defect in the system.
We analysed this in more detail with systems from Munich Re, LV 1871, and
TUM.

Class A Class B

15

These are two clones of a clone
group.

Class A Class B

Inconsistent?

Unconscious?

Defect?

16

One of these clones was changed. In the study we then asked the developers:
Was the change done conscious of the clone?
Does the inconsistency constitute a clone?

Class B Inconsistent: 52%

Unconscious: 28%

Defect: 50%

17

Of all clones we found in the analysed systems, 52% contained inconsistencies.
Of these inconsistent clones, 28% were changed unconscious of the copies.
Of the inconsistent clones that were changed unconscious of the copies, 50%
were real defects.

Every second unconsciously
inconsistent change constitutes a fault.

Jürgens et al., ICSE'09, 2009

18

Group work

Group 1: How do the types of defects found
with automatic static analysis compare to
defects found by tests or reviews?

10 minutes, cards
Short presentation

Group II: When in the development process
should automatic static analysis be applied
(e.g., before or after which other methods,
how often)?

19

Static analysis finds largely different defects than tests, but many defects also
found in a review.
If there is a good tool that finds a specific type of defect it often finds it more
thoroughly than a review.
Static analysis is mostly suitable for finding readability problems.

Static analysis should be applied as often as possible, e.g., in the nightly build
or better directly in
the IDE of the developer. It is a good entry criteria for a code inspection to save
the inspectors the
time for noting defects that a tool could detect cheaper.

Clone detection: Processing steps

Storage

load

tokenise
&

normalise

find duplicates

extract
clones

visualise

20

First, the code is loaded from the storage system.
Second, the code separated into tokens and these tokens are normalised, e.g.,
identifier names are
removed.
Third, in the normalised tokens, duplicates are detected.
Fourth, the duplicates that constitute clones are extracted.
Fifth, the extracted clones are suitably visualised.

Normalisation example

String readFileUtf8(File file) {

	
 FileInputStream in = new FileInputStream(file);

 byte[] buffer = new byte[file.length()];

	
 in.read(buffer); in.close();

 return new String(buffer, „UTF-8“);

}

String readFileUtf16(File file) {

	
 FileInputStream in = new FileInputStream(file);

 byte[] buffer = new byte[file.length()];

	
 in.read(buffer); in.close();

 return new String(buffer, „UTF-16“);

}

id0 id1(id2 id3) {
	
 id0 id2 = new id0(id4);

	
 id0[] id1 = new id0[id2.id3()];
	
 id0.id1(id2); id0.id3();

	
 return new id0(id1, lit0);
}

id0 id1(id2 id3) {
	
 id0 id2 = new id0(id4);

	
 id0[] id1 = new id0[id2.id3()];
	
 id0.id1(id2); id0.id3();
	
 return new id0(id1, lit0);
}

21

This examples shows why normalisation is necessary.
Here the method that reads a UTF-8 file was copied and changed so that it
reads UTF-16 files.
In essence, this still is a copy and if there is a change in readFileUtf8, there is a
high probability
that readFileUtf16 also has to be changed.
Hence, identifiers and literals are normalised to "id" and "lit" so that the
duplication finder
is still able to find them.

Normalisation example

String readFileUtf8(File file) {

	
 FileInputStream in = new FileInputStream(file);

 byte[] buffer = new byte[file.length()];

	
 in.read(buffer); in.close();

 return new String(buffer, „UTF-8“);

}

String readFileUtf16(File file) {

	
 FileInputStream in = new FileInputStream(file);

 byte[] buffer = new byte[file.length()];

	
 in.read(buffer); in.close();

 return new String(buffer, „UTF-16“);

}

id0 id1(id2 id3) {
	
 id0 id2 = new id0(id4);

	
 id0[] id1 = new id0[id2.id3()];
	
 id0.id1(id2); id0.id3();

	
 return new id0(id1, lit0);
}

id0 id1(id2 id3) {
	
 id0 id2 = new id0(id4);

	
 id0[] id1 = new id0[id2.id3()];
	
 id0.id1(id2); id0.id3();
	
 return new id0(id1, lit0);
}

Clones contain similar but not necessarily identical code

22

• Number of clone groups/clone instances
• Size of largest clone/cardinality of most

frequent clone

• Cloned Statements
– Number of statements in the system being part of at least one clone

• Clone Coverage
– #Cloned Statements / #Statements
– Probability of a randomly chosen statement to be part of a clone

• Redundancy Free Source Statements (RFSS)
– Size of system after (hypothetical) perfect clone removal

Measures for cloning

23

Different measures for cloning are interesting for different goals.
The number of clone groups and instances shows how many refactorings
would be necessary.
The size of the largest clone or the cardinality of the most frequent clone show
the hot spots.
Clone coverage gives a feeling how big the problem is over the whole system.
RFSS shows the actual size of the system.

Measures example

class Test {

	
 int doX (int a, int b) {

	
 	
 if (a > b) {

	
 	
 	
 return 2*a; }

	
 	
 return 2*b;

	
 }

	
 int doY (int a, int b) {

	
 	
 return a+b;

	
 }

	
 int doZ (int c, int d) {

	
 	
 if (c > d) {

	
 	
 	
 return 2*c; }

	
 	
 return 2*d;

	
 }

}

• Statements: 11

• Cloned Statements: 8

• Clone Coverage: 8/11 ≈ 70%

• RFSS: 7

24

Compare View (~20 LOC)

Seesoft View (~400 LOC)

Tree Maps (>1.000.000 LOC)

Trends over Time

Visualisation of
clone detection results

25

Depending on the the purpose of the analysis and the size of the part I want to
look at,
different visualisations are appropriate.

Clone compare view

26

The clone compare view, here in Eclipse, shows the cloned parts of two classes
next to each other.
It allows a detailed inspection of the the clones.

Clone bars

• Displays cloning information in the IDE
• Helps when working with cloned code

27

Clone bars are also shown in an IDE, but directly on the side of the code you
work with.
If you change existing code, this bar warns you that there are clones that you
might have to
change as well.

Tree map

Visualisation of

• Structure
• Size
• Redundancy

in a single
picture

28

The tree map is useful to get an overview of how cloning distributes over the
whole system.
The more red a square is, the higher the clone coverage in this class.

Apache Tomcat 6.0.24

29

We use the source code of Apache Tomcat to show you tree map visualisation
of cloning.

30

The top-level package in Tomcat is
"org".

31

Below "org" there is the package
"apache".

32

The "apache" package contains several further packages.

33

Which in turn contain further
packages.

34

Which contain finally Java
classes.

35

These Java classes are then overlayed with the degree of clone coverage they
have.

Clones in models

Deissenboeck et al., ICSE'08

36

Cloning is not only a problem in code. Also models contain copies.
We analysed this at MAN Nutzfahrzeuge and their Simulink/Targetlink models.
 Simulink/TargetLink models with about 20,000 blocks in 71 files
 Identified: 139 clone classes after filtering
 Includes clones of library blocks
 37% of relevant blocks are part of at least one clone group
 Most clones affect several files/transcend several hierarchies

Clones in requirements specifications

000,40,40,50,60,911,1333,255,36,86,978,710,811,513,414,114,2
18,220,4

32,6

60,6

129,6

Relative blow-up in percentage

Mean 13,5%

Jürgens et al., ICSE'10

37

Also requirements specifications are affected by cloning.
The diagram shows results of a study we did with real world specifications.
Each bar is the relative
blow-up for a specification. The blow-up denotes how much larger the
specification is than it would
need to be without cloning.
The maximum has a blow-up of 11,000 words! But there are specifications with
no or almost no
cloning.
On average, an inspection of the requirements would need more than 2
additional person days
because of cloning.

Cloning also in
models
and
requirements specifications

38

Quality
evaluation

Code
analysis

39

Quality
evaluation

40

Group work

What are useful measures for
quality or specific quality
attributes?

10 minutes
Cards
Short presentation

41

The results of this group work will be reused in later lectures.

Example:
Average maintenance effort

42

Quality evaluations will be discussed using the example of maintenance efforts.
The average
maintenance effort for the next year would be an interesting measure for
maintainability.
We use public data from the NASA system "CM1".
• Space craft instrument
• Developed in C
To evaluate its quality, we use our existing maintainability model.

Bayesian nets

A B

C

T = 0.6
F = 0.4

 T	
 F
Low	
 0.3	
 0.6
Med	
 0.5	
 0.25
High	
 0.2	
 0.15

P(A)

P(C|A,B)

P(B|A)

43

• Cause effect graphs
• Based on Bayesian inference
• Are therefore able to model uncertainty
• Node Probability Table (NPT) for each node
• N x M
• N states in the node
• M product of the cause node states

Quality model

+

+

-

Maintenance

Quality
assurance

Testing

Analysis

Compr.

Reading

Modification

Implementation

Regularity of
implementation

Size of modules

Appropriateness
of comments

44

This is the simplified model we use for the quality evaluation.
It has a reduced activity tree that decomposes "maintenance" and the factors
are simplified
to just three. A realistic maintainability model contains more than hundred
factors.

Transition to Bayesian net
Maintenance

Quality
assurance

Testing

Analysis

Comprehension

Reading

Regularity of
implementation

Size of modules

Appropriateness
of comments

Modification

Implementation

45

The activity-based quality model can be directly transformed into a Bayesian
net.
The factors become nodes that influence the activities on which the have an
impact.
The activities than influence their higher-level activities until "maintenance" is
reached.

Adding measures
Maintenance

Quality
assurance

Testing

Analysis

Comprehension

Reading

Regularity of
implementation

Size of modules

Appropriateness
of comments

Modification

Implementation

Average change
effort

Comment
ratio

Average
cyclomatic
complexity

Average
module size

46

The factors as well as the top-level activity need explicit measures.
In the example, we only use automatically measureable measures, because
these are available
in the NASA data set.

47

This is the Bayesian net implemented in the tool AgenaRisk.
The difficulty lies in defining suitable node probability tables for all nodes.
With the final net, it is possible to set a desired average change effort and
calculate the most
probable explanation in comment ratio, average cyclomatic complexity, and
average module size.
Alternatively, we can set measured values for these and calculate the
distribution of the average
change effort.

Quality
evaluation

Code
analysis

48

