Technische Universitat Mﬂnchenm

Software Quality
Management

Dr. Stefan Wagner

Technische Universitat Munchen

Garching
21 May 2010

Last QOT: What quality attribute is
the hardest to evaluate with tests?

"Absence of defects"
"Safety”
"Reliability”

"Usability"

Showing absence of defects is clearly not possible with testing. As Dijkstra's law says:
"Testing can show the presence but not the absence of errors."

Safety is indeed hard to evaluate with tests alone as the system has to be safe in all cases
and under all circumstances. Nevertheless, testing is suitable as one building block for
providing safety evidence.

The best way of evaluating reliabilty are tests. The best way are field tests (or beta tests)
in which the future users work with the system. Also system tests tend to be a useful
means for evaluating reliablity.

Usability can be tested with user tests. The Nielsen-Norman law says: "Usability is
quantifiable.”

New QOT: "On which quality attribute do reviews have the most direct influence?"

Constructive -
Quality Assurance Testmg

/

Review of last week's lecture

Metrics and

"’P‘@M
Sl

| .0
“\\\Q\."‘.'

Measurement

Certifi-

cation ?L

Management a

We are still in the part "Product Quality".

There is no fixed terminology, but "review" seems to be the most used umbrella term for
all quality assurance methods that involve reading the contents of an artefact to find
quality defects.

Walkthroughs are usually more light-weight in that the author explains the artefact.
Inspections are more formalised.

Reviews and inspections are testing methods.

Walkthrough

Peer
. More
Review
formalised
Technical Review process

Formal or Fagan-
Inspection

Walkthrough, also called presentation reviews, have the aim that the participants
understand the contents of the analysed artefact. The author guides the group through a
document and his or her thought processes, so all understand the same thing. The end
should be a consensus on how to change the document.

Peer reviews do not involve the author explaining the artefact. The author gives the
artefact to one or more colleagues who read it and give feedback. The aim is to find
defects and get feedback on the programming style.

Technical reviews formalise this process. They are often also management reviews or
project status reviews. Here the aim is often to make decisions about the project
progress. A group discusses the artefact and makes a decision about the content.

The main aim of inspections is to find defects. It involves formal individual and group
checking using sources and
standards. Usually there are detailed and specific rules.

Gilb, Graham, Software Inspection, 1993

8
A surprising but well investigated fact about reviews is that the optimal reading speed is
about 1 page per hour.

The normal reading speed (without the aim of finding defects) is considerably higher.

If you read significantly faster, you miss defects, if you read slower, you do not find more
defects.

Inspections

On average 1/3 of all faults
Up to 93% of faults

|-2 person-hours per fault

Wagner, A Literature Survey of the Quality Economics of Defect-Detection Techniques, 2006
9

= Effective and efficient
= Effectivness
= Are able to find up to 93% of faults
= On overage, a third of the faults are found
= Efficiency
= Effort to detect a fault 1-2 person-hours / fault
= Comparable to common testing methods
= But
= Also in early phases
= Also on requirements and design documents
= Fault removal is the least expensive

Estimated review effectiveness

Percentage of defects

21-40 41-60 61-80 81-100

Ciolkowski, Laitenberger, Biffl, Software Reviews: The State of the Practice, 2003

10
In practice, reviews do not often reach the highest possible effectiveness.

Most reviews seem to have an effectiveness between 20% and 60%.

Defect-removal effort

Req. Inspection

K

System Test

Design Inspection

2.3

Integration Test

54

Code Inspection Unit Test

2.7 3.5

Wagner, A Literature Survey of the Quality Economics of Defect-Detection Techniques, 2006
11

The most interesting data about inspections is the defect-removal effort. It is not only
interesting to look at the effort that is needed for finding a defect, but also how much
effort is spent on removing it. An inspection gives you directly the cause of the problem,
while testing always needs debugging first.

The highest removal effort is in system testing with up to 20 person hours per defect.

l 10 100 1000 10000
=

Defect Costs

Boehm, Software Engineering Economics, 1981

12
It is always better to prevent a defect then to remove it
The earlier a defect is found, the less expensive it is.

Defect costs here include finding and removing the defect as well as further c
(loss of reputation).

There is a ten-fold increase from phase to phase. Hence, investing early pays
heavily.

How often do you review?

Percentage of respondents

Weekly

Monthly

At milestones

Review Inspection

Wagner et al., Quality Models in Practice, 2010

13

Most reviews and inspections are done at specific milestones in the
development process, i.e., only a small number of times.

Some companies, however, use reviews and even inspections on a daily basis.

Regular reviews of artefacts

Percentage of respondents

Requirements [

Design EU

Code i

Ciolkowski, Laitenberger, Biffl, Software Reviews: The State of the Practice, 2003

14
Overall, reviews are not well adopted in practice.

Less than a third of the companies perform regular code reviews.
The situation is not much better for requirements and design.

Obstacles to using reviews

Percentage of respondents

Time pressure £
Cost L

Lack of training [l

Ciolkowski, Laitenberger, Biffl, Software Reviews: The State of the Practice, 2003

15

The major obstacles that people in practice see are time pressure, cost, and
lack of training.

Group work

You are responsible to introduce
Inspections at your company.
How do you convince your
colleagues!?

|5 minutes
Design poster
Short presentation

16

Early investment pays of later
Early feedback on the quality
Improves readability

Early investment pays off later.
Overall quality is higher although costs are lower.

The skills of the involved people increase.
New employees learn fast in reviews.

Early investment pays off later.

Better control over the project in early phases.

Inspection process

Document
Planning
’ Checklists
f Kick off _»In;llwli:l.ual_> Logil.ng "fE|c|ht and R
Entry checking meeting follow-up | | ..

Gilb, Graham, Software Inspection, Addison-VVesley, 1993

20

The planning step involves all organisational tasks, e.g., who needs to take
part? What will be inspected?

Then it is checked whether the document fullfils the entry criteria, e.qg.,
specific automatic code checks have been peformed, the code compiles.

In the kick off meeting, all participants come together to discuss how the
inspection will be done. They will receive all necessary material.

Afterwards, all participants check the document individually for defects (or
issues). Most often, checklists are used to drive this checking.

In the logging meeting, the individual issues are logged. Sometimes this also
involves joint checking.

The edit and follow-up meeting is responsible for issuing change requests for
found defects. Here, the document can be scheduled for re-inspection.

If the document fullfils the exit criteria, it is successfully inspected.

Reading techniques

* Checklist-based Reading

* Perspective-based Reading
* Defect-based Reading

* Usage-based Reading

Basili et al., The Empirical Investigation of Perspective-Based Reading, 1996

Checklist-based reading
- Defect checking using a checklist
- Coding guidelines

Perspective-based reading

- Reading from the point of view of different roles
- Designer, developer, maintainer, user, or tester
Defect-based reading

- Searching for specific defect classes

- Incorrect function, interface fault, or type fault

Usage-based reading
- Reading following the use cases
- Needs prioritised use cases

21

Oen Merged Abendoned Chign 5 -1, Suenunil & sivmetan

anNd3I0ID

open source project

All open changes
0 Subyect Owner Project Branch Updated V R
- Gamin master 455 PM
Baphaed Mol master 423PM vV Vv
Gamin master 239PM
Johan Redestig master Q06AM v
Christian Mehimauer master 9.05 AM x
Johan Redestig master 904 AM v
Mirko Nasalo master 8:50 AM -1
Christian Mehimauer master 856 AM v
Christian Mehimauer master 8S55AM X
Johan Redestig master 8:53 AM
KennyGong master 8:04 AM -
Chih-Wei Huang master 32AM X
Brian Muramatsy eclar 317 AM
David Tumer master 308 AM v
Lean-Baptiste Queny master 220AM v +1
' androd-msm-26.32 213 AM
master 208AM Vv ¥
master 208AM v #1
master 155 AM
master 1O6AM X X
master 105AM v X
master 12290 v
master May 18 v
androd-2.6.32 May 18 +1
master May 18 v 1
Nexa
22

The Android open source project uses Gerrit as web based reviewing tool
review.source.android.com

Change 18a221cad: Adds support for UBFX to JIT and Disassembler

Change-ld: 18a221cad8ic1302498300d60a401770c9041901c Adds support for UBFX to JIT and Disassembler
Owner David Butcher

This introduces UBFX instruction generation abilities to the Pixelflinger JIT,

Project platform/system/core and also modifies the component extraction function to generate the
instruction.
Branch master
The extract function contains defines to prevent generation of UBFX on pre-v7
Uploaded Dec 4, 2009 6:08 PM cores. The JIT itself retains the ability to produce the instruction even on
Updated May 19, 2010 6:43 PM vs/§.
Status Review in Progress This patch only generates UBFX when MOV, AND or BIC can't be used. Based on
the TRM, this appears to be faster on A9 than using UBFX in all cases.
Permalink &)
On startup, Pixelflinger JITs three chunks of code. UBFX improves these as
folloms:
00000077:03515104_00000000_00000000
(Blends a single colour into an RGBS565 buffer.)
Before: 27 inst/pixel, After: 24 inst/pixel, Improvement: 12.5%
00000077:03545404_00000A01_00000000
(Blends RGBABBB8 texture into an RCB565 buffer using alpha.)
Before: 30 inst/pixel, After: 27 inst/pixel, Improvement: 11.1%
00000077:03545404_00000A04_00000000
(Blends RGBS65S texture into an RGBS6S buffer using alpha.)
Before: 29 inst/pixel, After: 27 inst/pixel, Improvement: 7.4%
Reviewer Venified Code Review
David Butcher
Mathias Agopian v Looks good 1o me, approved
Martyn Capewell +1 Looks good to me, but someone else must approve
Jean-Baptiste Query x Fails

® Need Verified +1 (Verified)

» Dependencies
¥ Patch Set 1 8a221cadsic13024963000602401770c9041901c (gitweb)

Author Martyn Capewell <martyn.capewell@arm.com> Dec 4, 2009 5:44 PM
Committer Dave Bulcher <david.butcher@arm.com> Dec 4, 2009 5:58 PM

repo download | checkout | pull | cherry-pick | patch |
Download repo download platform/systems/core 12709/1 | |

File Path Comments Diff
.) Si Side Unifi

Overview of a change with description, change set, and responsible reviewers.

AQN230ID |

open source project

@A
Change 139a4eb2b: samples/ApiDemos/src/com/example/android/apis/app/MyPreference.java
P Patch History
oo Whtmonce (None) ¥ symas oy s o
I al) Irtraine Dierence V. Show Toabs
TooWer § Columes: 100 - -
O Show Fut Fie
<Menyinfiatef romXml java 2Up to change NotficationDisplay |ava
OM Version New Version
(Download) (Downkoad)
(- skipping 148 common ines ...)
b 149 super writeToParcel(dest, flags): 149 super writeToParcel (dest, flags):
150 150
151 // Save the click counter 151 // Save the click counter
152 dest.writelnt(clickCounter); 152 dest.writeInt(clickCounter);
153 } 153 }
154 154
155 public SavedState(Parceladle superState) { 155 public SavedState(Parcelable superState) {
156 super(superState); 156 super(superState);
157 } 157 }
158 158
159 SSuppresswarnings (“unused”)
Romain Guy Homove this waming tha & used 7:08 AM
Christisn Mehimaver | trow & Land, bul ecione doss nof koow. Thals why | added e T.40 AM
Romain Guy Then £'s not needed, ploase remove L 743 AM
159 public static fimal Parcelable.Creator<SavedStater CREATOR - 160 public static fimal Parcelable.Creator<SavedState» CREATOR -
160 new Parcelable.Creator<SavedStates() { 161 new Parcelable.Creator<SavedState>() {
161 public SavedState createfroaParcel (Parcel 1n) { 162 public SavedState createfromParcel (Parcel 1a) {
162 return new SavedState(in); 163 return new SavedState(ia);
163 } 164 }
164 165
165 public SavedState[] mewArray(int size) { 166 public SavedStatel] newArray(int size) {
166 return new SavedState[size): 167 return new SavedState(size);
167 } 168 }
168 }: 169)i
(... akipping 3 common ines ..)
Menyinfiatef romXml java 2Up to change NotficationDisplay java >

24
Side-by-side diff view of the change in one file with inline comments from the reviewers.

ogle

Mondrian

Google uses internally a very similar approach using their Mondrian tool.

25

WD

