
Technische Universität München
Institut für Informatik

D-80290 München, Germany

and Architectures

to Components

From Classes

A formal framework for modular specification and
verification of components and architectures

Manfred Broy

Import, OO
Components

Manfred Broy 2Elitestud. SE, Form. Meth. , Februar 2007

Specification, verification, architecture ...
Informal

requirements

form
alisation

S

Formalized
system requirements

S1
S2

S4 S3

R1
R2

R4 R3
architecture

realization

de
liv

er

R1
R2

R4 R3

Requirements
Engineering
Validation

Architecture design
Architecture verification
S ⇐ S1⊗S2⊗S3⊗S4

Component
implementation
verification
R1 ⇒ S1
R2 ⇒ S2
R3 ⇒ S3
R3 ⇒ S4

Integration
R = R1⊗R2⊗R3⊗R4

R

int
eg

ra
tio

n

System delivery
System verification

R ⇒ S

Manfred Broy 3Elitestud. SE, Form. Meth. , Februar 2007

Object-oriented Components and Interfaces

Classes as a components
• Needed concepts

◊ Observations
◊ Component: Class / Set of Classes
◊ Composition of classes
◊ Interface specification

• Specification by
◊ Contract
◊ State machines

Manfred Broy 4Elitestud. SE, Form. Meth. , Februar 2007

Observations

In an OO software system
• which consists of a set of classes where

◊ all sub-method calls are targeted to methods that are part of
the system (this is the characterization of a system in contrast
to a “component” that may rely on methods from the outside)

we may
• invoke methods (stimulus)
and observe
• values that the system returns (reactions)

provided that the method call terminates
• Then the execution of a method invocation can be

modelled as one large state transition (we call this the
closed view)

Manfred Broy 5Elitestud. SE, Form. Meth. , Februar 2007

Data types

• A type is either a constant type or a variable type.

• Constant types are basically sets of data values or class
types (being names of classes used as types of the objects
of that class).

• An identifier with constant type denotes a value of that set.

• A variable type is denoted by Var T where T is a constant
type.
◊ An identifier with variable type denotes a variable (an attribute) that

has assigned a value out of the set of elements of type T.

• Every class name defines a type, the elements of which are
object identifiers

Manfred Broy 6Elitestud. SE, Form. Meth. , Februar 2007

Method header

• To keep our notation simple we consider only methods with one
constant parameter w and one variable parameter v; headers read

Method m (w : WT, v : Var VT)

where WT and VT are constant types.

• The set of method invocations INVOC(m) for the method m is defined
by:

INVOC(m) = {m(b1,b2,w,v,v’): w ∈ WT, v, v’ ∈ VT, b1, b2 ∈ Object}

where phrase p ∈ T expresses that p is a value of type T and m(b1, b2,
w, v, v’) denotes a tuple of values.

• Here

◊ b1 denotes the caller and b2 the callee,

◊ v denotes the value of the variable parameter before and

◊ v’ its value after the end of the execution of the method invocation.

Manfred Broy 7Elitestud. SE, Form. Meth. , Februar 2007

Specification by Contract: States and their Attributes

• The states of the objects of a class are determined
by the valuations of the attributes of that class.

• An attribute is a typed identifier.
• An attribute set V is a set of the form

V = {a1 : T1, … , an : Tn}

where a1, … , an are (distinct) identifiers and
T1, … , Tn are their types.

• A valuation of the attribute set V is a mapping
σ: V → UD

where UD is universe of data values.

Manfred Broy 8Elitestud. SE, Form. Meth. , Februar 2007

Specification by contract for a Method

• Let V = {a : Var AT} be an attribute set.
• A specification by contract for a method with header

method m (w : WT, v : Var VT)

in a class with attribute set V is given by
method m (w : WT, v : Var VT)
pre P(w, v, a)
post Q(w, v, a, v’, a’)

• Here P(w, v, a) and Q(w, v, a, v’, a’) denote
predicates
◊ v, a denote the values before and v’, a’ the values of the

variables after the method invocation

• Two options: P guarantees termination or not

Manfred Broy 9Elitestud. SE, Form. Meth. , Februar 2007

Example. Specification by Contract (SbC)

• We consider only one method here and assume only one
attribute

u : Var Seq Data

• Specification by contract for a method that gets access
(“reads”) the ith element of sequence u:

Method get (i : Nat, r : Var Data);
pre 1 ≤ i ≤ length(u)
post r’ = ith(i, u) ∧ u’ = u

Here we assume that the functions
◊ length(s) (yielding the length of sequence s) and
◊ ith(i, s) (yielding the i-th element of sequence s) are predefined

for sequences, for instance, by an algebraic data

Manfred Broy 10Elitestud. SE, Form. Meth. , Februar 2007

Specification of the data elements
SPEC SEQ =

{ based_on BOOL,
type Seq α,

‹› : Seq α, empty sequence
‹_› : α → Seq α, Mixfix one-element sequence
° : Seq α, Seq α → Seq α, Infix concatenation
iseseq: Seq α → Bool,
first, last: Seq α → α,
head, rest: Seq α → Seq α,

index: α, Seq α → Nat,
length: Seq α → Nat,
ith: Nat, Seq α → α,
drop: α, Seq α → Seq α,
cut: Seq α, Nat, Nat → Seq α

Manfred Broy 11Elitestud. SE, Form. Meth. , Februar 2007

Axioms
Seq α generated_by ‹›, ‹_›, °,
iseseq(‹›) = true,
iseseq(‹a›) = false,
iseseq(x°y) = and(iseseq(x), iseseq(y)),

length(‹›) = 0,
length(‹a›) = 1,
length(x°y) = length(x) + length(y),

ith(1, ‹a›°y) = a,
ith(n+1, ‹a›°y) = ith(n, y),

index(a, ‹›) = 0,
index(a, ‹a›) = 1,
a ≠ b ⇒ index(a, ‹b›°x) = if index(a, x) = 0 then 0 else 1 + index(a,x) fi

Manfred Broy 12Elitestud. SE, Form. Meth. , Februar 2007

Axioms
drop(a, ‹a›°x) = x,
a ≠ b ⇒ drop(a, ‹b›°x) = ‹b›°drop(a, x),

cut(s, i, 0) = ‹›
cut(s, 0, j+1) = ‹first(s)› ° cut(rest(s), 0, j)),
cut(s, i+1, j+1) = cut(rest(s), i, j),

x°‹› = x = ‹›°x,
(x°y)°z = x°(y°z),

first(‹a›°x) = a,
last(x°‹a›) = a,
head(‹a›°x) = ‹a›,
rest(‹a›°x) = x
}

Manfred Broy 13Elitestud. SE, Form. Meth. , Februar 2007

Simple Export Interfaces

A syntactic export interface consists of

a set types being classes (names) and

for each class a set M of method headers.

Manfred Broy 14Elitestud. SE, Form. Meth. , Februar 2007

Specification by contract of classes

For a syntactic export interface consisting of

• a set of method headers and a set of class names

• a set of typed attributes defining the class state space and

a specification by contract is given by

• a specification by contract for each of its methods.

• initial assertions:

initial P(a)

expressing that initially the assertion holds

• In addition, state transition assertions R(a , a’) and invariants Q(a)
may be given restricting the state changes for all methods.

• It is good to make invariants explicit, but there may be implicit
invariants

Manfred Broy 15Elitestud. SE, Form. Meth. , Februar 2007

Export Interfaces described by State Machines
• Given an interface with

◊ an attribute set V and

◊ a set of methods M

the associated state transition function has the form

Δ: Σ(V) × INVOC(M) → (Σ(V) ∪ {⊥})

• For m ∈ INVOC(M) and s, s’ ∈ Σ(V) the equation

Δ(s, m) = s’

expresses that in state s method invocation m is enabled and leads to state s

If

Δ(s, m) = ⊥

this means that the method invocation m is not enabled in state s or that the
method invocation does not terminate.

• In addition, we assume a set of initial states ΙΣ ⊆ Σ(V).

Manfred Broy 16Elitestud. SE, Form. Meth. , Februar 2007

Example. Memory Cell

class Cell =
{ c: Var Data | {void}

initial c = void

method store (d: Data)
pre c = void
post c’ = d

method read (v: Var Data)
pre c ≠ void
post c’ = c ∧ v’ = c

method delete ()
pre c ≠ void
post c’ = void

}

Manfred Broy 17Elitestud. SE, Form. Meth. , Februar 2007

Memory cell as a labelled state machine

delete() {cÕ = void}

read(v) {vÕ = c ∧ cÕ = c} store(d) {cÕ = d}
initial

c = void c ≠ void

Labelled state machines:
Δ: Σ(V) × INVOC(M) → Σ(V) ∪ {⊥})

Manfred Broy 18Elitestud. SE, Form. Meth. , Februar 2007

Forwarded calls

A method invocation may lead to a further method
invocation; we speak of a

forwarded method call

Manfred Broy 19Elitestud. SE, Form. Meth. , Februar 2007

Example. Account manager
We consider following three types:

Person the type of individuals that may own accounts
Account the type of accounts (a class)
Amount the type of numbers representing amounts of money

For the class Accountmanager we consider only one method.
It uses a function f

Fct f = (x: Person) Account: …
that relates persons to their account numbers.

Class Accountmanager =
{…

method credit = (x: Person, y: Var Amount, z: Var Account)
…
}
The method credit calls a method

method balance = (y: Var Amount)

Manfred Broy 20Elitestud. SE, Form. Meth. , Februar 2007

Example. Account manager

Class Accountmanager
{ Fct f = (x : Person) Account:…

method credit = (x : Person, y : Var Amount, z : Var Account):
f(x).balance(y); z:= f(x)

}
Class Account
{ a, d : Var Nat; {a denotes the state of the account, d what is bound

by credit}

invariant a ≥ d;

method balance = (y : Var Amount)
if a-d ≥ y then d := d+y
else if a = d then y := 0

else y := a-d; d := a
fi fi

}

Manfred Broy 21Elitestud. SE, Form. Meth. , Februar 2007

Specification by contract
In this example a call of the method credit

◊ leads to a call of the method balance,
◊ which may change the attribute d.

The specification by contract for credit reads as follows:

method credit = (x : Person, y : Var Amount, z : Var Account):
pre f(x) ≠ nil
post z’ = f(x)
∧ f(x).d’ = f(x).d+y’
∧ (f(x).a-f(x).d ≥ y ⇒ y’ = y)
∧ (f(x).a-f(x).d ≤ y ⇒ y’ = f(x).a-f(x).d)

• This shows that we have to refer to attributes of the object f(x) in the
method credit.

• Here we use the notation b.a to refer to attribute a in the of the
object b.

Manfred Broy 22Elitestud. SE, Form. Meth. , Februar 2007

Example. Account manager (continued)
Class Account
{ a, d : Var Nat;

invariant a ≥ d;

method balance = (y : Var Amount)
if a-d ≥ y then d := d+y
else if a = d then y := 0

else y := a-d; d := a
fi fi

}

Replacement: d by e = a-d

Class Account’
{ a, e : Var Nat;

invariant a ≥ e;

method balance = (y : Var Amount)
if e ≥ y then e := e-y
else if e = 0 then y := 0

else y := e; e := 0
fi fi

}

The classes Account and Account’ are
observable equivalent, but use different
local attributes and thus cannot be
replaced by each other in the context of
SbC.

Manfred Broy 23Elitestud. SE, Form. Meth. , Februar 2007

Forwarded Calls, Back-Calls, and Call Stack

• When dealing with forwarded calls there may
be call-backs, in general.
◊ a method invocation for object b may lead to a

forwarded call that in turn may lead to invocation
of methods of object b.

We speak of a call-back.

Manfred Broy 24Elitestud. SE, Form. Meth. , Februar 2007

Account manager (continued)

Accountmanager

credit(e, self, x, y)

balance(self, f(x), y)

return_balance(self, other, w)
return_credit(e, self, x, w)

Manfred Broy 25Elitestud. SE, Form. Meth. , Februar 2007

credit(e, self, x, y, z)/balance(self, f(x), y){b := e, p := x}

return_balance(self, f(x), w)/return_credit(b, self, w, f(p))

Here we split each method invocation in two messages:
• The invocation message
• The return message
This models asynchronous method calls
Note that
• the state machine requires additional attributes that are not the attributes

that we use in the class Accountmanager such as
b: Var Object
p: Var Person

Example: Account manager (continued): Call forwarding

Manfred Broy 26Elitestud. SE, Form. Meth. , Februar 2007

Why simple (export only) classes are not enough
Conventional OO has the following deficiencies:
• Synchronous method invocation inadequate concept for large

distributed software
◊ Modelling of forwarded method calls of methods outside the considered

system part
◊ for system with varying availability and QoS
◊ Inherently sequential

• Interface specifications insufficient
◊ Design by contract breaks principle of encapsulation
◊ Forwarded calls and call backs need to make stack discipline explicit

• Appropriate notion of component missing
• Concept of composition missing/unclear/too complicated
• No support of hierarchical composition/decomposition
• No build-in concept of real time/concurrency
A way out: Export/Import interfaces

Manfred Broy 27Elitestud. SE, Form. Meth. , Februar 2007

Open View: Components with Export and Import

• We treat methods that can be called in forwarded
method calls to the outside of the considered
subsystem explicit:

• We use export and import in specifications and
classes

• The imported methods are thus that are used in
forwarded method calls to the outside

This leads
• to what we call an open view onto sets of classes

Manfred Broy 28Elitestud. SE, Form. Meth. , Februar 2007

Syntax of export/import interface

A syntactic export/import interface consists of
• two syntactic interfaces represented by

◊ two sets of class names,
◊ sets of method headers associated with each class name,

which define the set of export and the set of import
methods.

• Methods in the set of export methods can be called
from the environment,

• Methods in the set of import methods are provided
by the environment and can be called by the
subsystem.

Manfred Broy 29Elitestud. SE, Form. Meth. , Februar 2007

 Import
 Method m ...

 Export
 Method m ...

component C

 Import
 Method m ...

 Export
 Method m ...

Import
 Method m ...

 Export
Method m ...

Components in OO with Multiple Sub-Interfaces

Manfred Broy 30Elitestud. SE, Form. Meth. , Februar 2007

Composition

 CA[EX(CAI)↔IM(CAI)]CB

 Import
 Method m ...

 Export
 Method m ...

 component CA

 Import
 Method m ...

 Export
 Method m ...

 CAI: Import
 Method m1 ...

 Export
Method m2 ...

Import
 Method m ...

 Export
 Method m ...

component CB

 Import
 Method m ...

 Export
 Method m ...

CBI: Import
 Method m2 ...

 Export
Method m1 ...

Manfred Broy 31Elitestud. SE, Form. Meth. , Februar 2007

Design By Contract: Example. Account manager (ctd)

Class Accountmanager
{ Fct f = (x : Person) Account: …
{export
method credit = (x: Person, y: Var Amount, z: Var Account):

pre f(x) ≠ nil
post z’ = f(x)
∧ f(x).d’ = f(x).d+y’
∧ (f(x).a-f(x).d ≥ y ⇒ y’ = y)
∧ (f(x).a-f(x).d ≤ y ⇒ y’ = f(x).a-f(x).d)
body f(x).balance(y); z:= f(x)

}

Manfred Broy 32Elitestud. SE, Form. Meth. , Februar 2007

Import part

import
{ a, d : Var Nat;

invariant a ≥ d;

method balance = (y : Var Amount):
pre true
post d’ = d+y’
∧ (a-d ≥ y ⇒ y’ = y)
∧ (a-d ≤ y ⇒ y’ = a-d)

}}

Manfred Broy 33Elitestud. SE, Form. Meth. , Februar 2007

Design By Contract: Example. Account manager (ctd)
Class Accountmanager
{ Fct f = (x : Person) Account: …
export
{ method credit = (x : Person, y : Var Amount, z : Var Account):

pre f(x) ≠ nil
post z’ = f(x)

∧ post.f(x).balance(y)
body f(x).balance(y); z := f(x)

}
import
{ a, d : Var Nat;

invariant a ≥ d;

method balance = (y : Var Amount):
pre true
post ...

}}

Manfred Broy 34Elitestud. SE, Form. Meth. , Februar 2007

DbC for Export/Import components

• Step 1: Specify: SbC: We give SbC for all methods
• Step 2: Design: Component implementation

◊ We provide a body for each exported method
◊ Only method calls are allowed that are either in the export or import

parts (no calls of “undeclared” methods)
◊ The body is required to fulfil the pre/postconditions

• Step 3: Verify: Component verification
◊ Verify the pre/post-conditions for each implementation of an export

method
◊ We refer to the SbCs for the imported (and the exported) methods

use in nested calls in the bodies when proving the correctness of each
exported method w.r.t. its pre/postconditon

Manfred Broy 35Elitestud. SE, Form. Meth. , Februar 2007

Remarks

• There is some similarity to Lamport’s TLA
where systems are modelled by
◊ The set of actions a system can do
◊ The set of actions the environment can do
◊ Actions are represented by relations on states
◊ Fairness/lifeness properties by temporal logic on

system runs
◊ Difference: actions are atomic - method calls are not

Manfred Broy 36Elitestud. SE, Form. Meth. , Februar 2007

An example in TLA - taken from Leslie’s book

Zur Anzeige wird der QuickTime™
Dekompressor „TIFF (LZW)“

benötigt.

Manfred Broy 37Elitestud. SE, Form. Meth. , Februar 2007

Remarks

• We may in addition structure the export and import
part into
◊ a set of pairs of export and import signatures that are sub-

signatures of the overall export and import interfaces

• This pairs may be called sub-interfaces
• This leads in the direction of connectors

Manfred Broy 38Elitestud. SE, Form. Meth. , Februar 2007

 Import
 Method m ...

 Export
 Method m ...

component C

 Import
 Method m ...

 Export
 Method m ...

Import
 Method m ...

 Export
Method m ...

Components in OO with Multiple Sub-Interfaces

Manfred Broy 39Elitestud. SE, Form. Meth. , Februar 2007

Composition

 CA[EX(CAI)↔IM(CAI)]CB

 Import
 Method m ...

 Export
 Method m ...

 component CA

 Import
 Method m ...

 Export
 Method m ...

 CAI: Import
 Method m1 ...

 Export
Method m2 ...

Import
 Method m ...

 Export
 Method m ...

component CB

 Import
 Method m ...

 Export
 Method m ...

CBI: Import
 Method m2 ...

 Export
Method m1 ...

Manfred Broy 40Elitestud. SE, Form. Meth. , Februar 2007

Composition for Export/Import Components

• Given E/I components ci with i = 1, 2, and export signature EX(ci) and
import signature IM(ci)

• ℜ({c1, c2}) holds, if there are no name conflicts.
• Then export signature EX and import IM of the result of the

composition c1 ⊗ c2 is defined by
EX(c1 ⊗ c2) = (EX(c1)\IM(c2)) ∪ (EX(c2)\IM(c1))
IM(c1 ⊗ c2) = (IM(c1)\EX(c2)) ∪ (IM(c2)\EX(c1))

• The composed component c = c1⊗c2
◊ exports what is exported by one of the components and not imported by

the other one and
◊ imports what is imported by one of the component and not exported by

the other one.

• Methods that imported by one component and exported by the other
one are bound this way and made local

Actually we get local (hidden) methods that way!
We ignore that to keep notation simple!

Manfred Broy 41Elitestud. SE, Form. Meth. , Februar 2007

Verification of composed components

Let all definitions as before and assume SbC for all methods
For proving the correctness of composition we prove
• for each exported method m with pre-condition Pex and

post-condition Qex

• that is bound by some imported method m with pre-
condition Pim and post-condition Qim that

Pim ⇒ Pex

Qex ⇒ Qim

Manfred Broy 42Elitestud. SE, Form. Meth. , Februar 2007

DbC for architectures export/import components

Design by contract for the export/import case:
• Step S: Specify system: Export only SbC
• Step A: Develop the architecture

◊ Step AD: Design architecture: List components and their export/import
methods

◊ Step AS: Specify architecture: Give Export/Import SbC for all components
◊ Step AV: Verify architecture

• Step I: Component implementation
◊ Step ID: Design: We provide a body for each exported method

Only calls are allowed that are either in the export or import parts (no calls
of “undeclared” methods)

◊ Step IS: Specification taken from architecture: The body is supposed to fulfil
the pre/post-conditions

◊ Step IV: Component verification: SbCs for imported methods are used when
proving the correctness of each exported method for its pre/postconditon

• Step G: Component composition - integration: correctness for free

Manfred Broy 43Elitestud. SE, Form. Meth. , Februar 2007

A fresh approach

• Forget about methods as atomic state changes
• Split message execution into two messages:

◊ Calls
◊ Returns

This means we go from
• State oriented specification to
• Communication (message exchange) oriented

specification

Manfred Broy 44Elitestud. SE, Form. Meth. , Februar 2007

In- and Out-Messages for a method header
• A method invocation consists of two interactions of messages

called the method invocation message and the return
message.

• Given a method header (for explanations see above)
method m (w : WT, v : Var VT)

the corresponding set of invocation messages is defined by
SINVOC(m) = {m(b1,b2,w,v): w ∈ WT, v ∈ VT, b1, b2 ∈ Object}

The return message has the type (where v’ is the value of the
variable after the execution of the method invocation)

RINVOC(m) = {return_m(b1,b2,v’): v’ ∈ VT, b1, b2 ∈ Object}

• With each method we associate this way two types of
messages, the invocation message and the return message.

Manfred Broy 45Elitestud. SE, Form. Meth. , Februar 2007

Sets of messages
• Given a set of methods M we define

SINVOC(M) = { c ∈ SINVOC(m): m ∈ M}

RINVOC(M) = { c ∈ RINVOC(m) : m ∈ M}

This way we denote the sets of all possible invocation
and return messages of methods that are in the set of
methods M.

Manfred Broy 46Elitestud. SE, Form. Meth. , Februar 2007

Example. Account manager (continued)

Class Accountmanager =
{…

export
method credit = (x: Person, y: Var Amount, z: Var Account)

…
import method balance = (y: Var Amount)

}

Manfred Broy 47Elitestud. SE, Form. Meth. , Februar 2007

credit(e, self, x, y, z)/balance(self, f(x), y){b := e, p := x}

return_balance(self, other, w)/return_credit(b, self, p, w, f(p))

Again the state machine

Manfred Broy 48Elitestud. SE, Form. Meth. , Februar 2007

Modelling Export/Import Interfaces by I/O Machines

In- and Out-Messages of a syntactic class interface
• Let c be a syntactic export/import interface with

◊ set EX(c) of export class names and their methods and
◊ set IM(c) of import class names and methods.
They define a set In(c) of ingoing messages

In(c) = SINVOC(EX(c)) ∪ RINVOC(IM(c))

and a set of outgoing messages Out(c) specified by

Out(c) = SINVOC(IM(c)) ∪ RINVOC(EX(c))

Manfred Broy 49Elitestud. SE, Form. Meth. , Februar 2007

Export/import state machine

• Given an interface c with an attribute set V and a set of
methods, the associated state machine has the form

Δ: State × In(c) → ((State × Out(c)) ∪ {⊥})
For m ∈ In(IF) the equation Δ(s, m) = ⊥ expresses that the
method invocation does not terminate.
The state space State is defined by the equation

State = Σ(V) × CTS
• Here CTS is the control state space. Its members can be

understood as representations of the control stack. Since we
do not want to go deeper into the very technical discussion
of control stacks, we do not further specify CTS. Again, we
assume that a set of initial states IState ⊆ State is given.

Manfred Broy 50Elitestud. SE, Form. Meth. , Februar 2007

Composition of the two state machines

Consider machines associated with the components ci (i = 1, 2):
Δi: Statei × In(ci) → (Statei × Out(ci)) ∪ {⊥}

We define the composed state machine
Δ: State × In(c) → (State × Out(c)) ∪ {⊥}

as follows
State = State1 × State2

for x ∈ In(c) and (s1, s2) ∈ State we define:
x ∈ In(c1) ∧ (s1’, y) = Δ1(s1, x) ⇒

y ∈ In(c2) ⇒ Δ((s1, s2), x) = Δ((s1’, s2), y)
∧ y ∉ In(c2) ⇒ Δ((s1, s2), x) = ((s1’, s2), y)

x ∈ In(c1) ∧ Δ1(s1, x) = ⊥ ⇒ Δ((s1, s2), x) = ⊥

Manfred Broy 51Elitestud. SE, Form. Meth. , Februar 2007

In analogy we define the case of input to the second
component:

x ∈ In(c2) ∧ (s2’, y) = Δ2(s2, x) ⇒
y ∈ In(c1) ⇒ Δ((s1, s2), x) = Δ((s1, s2’), y)

∧ y ∉ In(c1) ⇒ Δ((s1, s2), x) = ((s1, s2’), y)
x ∈ In(c2) ∧ Δ2(s2, x) = ⊥ ⇒ Δ((s1, s2), x) = ⊥

This gives a recursive definition for state transition function Δ.
We define

Δ = Δ1||Δ2
Actually, this way of definition results in a classical least
fixpoint characterization of the composed transition relation Δ.

Manfred Broy 52Elitestud. SE, Form. Meth. , Februar 2007

Interface Abstraction by Functions on Streams
Given a state machine

Δ: State × In(c) → (State × Out(c)) ∪ {⊥}

we specify a function called interface abstraction

αΔ: State → (In(c)* → Out(c)*)

by (let i ∈ In(c), x ∈ In(c)*,

〈i〉ˆx denotes the concatenation of the

one element sequence 〈i〉 with the stream x)

(σ’, o) = Δ(σ, i) ⇒ αΔ(σ)(〈i〉ˆx) = 〈o〉ˆαΔ(σ’)(x)

Δ(σ, i) = ⊥ ⇒ αΔ(σ)(〈i〉ˆx) = 〈〉

Obviously αΔ(σ) is prefix monotonic.
αΔ(σ) is the abstract interface for the state machine (Δ, σ),
• which is the state machine with the initial state σ
• and the state transition function Δ.
The interface abstraction gets rid of the state space (information hiding)

Manfred Broy 53Elitestud. SE, Form. Meth. , Februar 2007

Observable Equivalence

• Two components c1 and c2 are observably
equivalent, if and only

• if their state machines (Δ1, σ1) and (Δ2, σ2) fulfil the
equation

αΔ1(σ1) = αΔ2(σ2)

Manfred Broy 54Elitestud. SE, Form. Meth. , Februar 2007

Account manager (continued)

• We define the associated function
αΔ(σ)

for the component Accountmanager with initial state σ by
one equation:

αΔ(σ)(〈credit(e, self, x, y, z)〉ˆ
〈return_balance(self, other, w)〉ˆx) =

〈balance(self, f(x), y)〉ˆ
〈return_credit(e, self, x, w, f(x))〉ˆαΔ(σ’)(x)

• In this case the specification fairly simple due to the simple
structure of the class.

• In particular, the problem of making the stack explicit
disappears.

Manfred Broy 55Elitestud. SE, Form. Meth. , Februar 2007

Concluding Remarks

• Export/import view
• Call are split into to messages
• Classes and object can be modelled state machines with

input and output
• This leads to a message switching view onto export/import

components
• Concurrency can be included
Further issues
• Why not go to full message switching then
• How would a programming language look like based on this

paradigm

	 and Architectures� � to Components ��From Classes	
	 Specification, verification, architecture ...
	Object-oriented Components and Interfaces
	Observations
	Data types
	Method header
	Specification by Contract: States and their Attributes
	Specification by contract for a Method
	Example. Specification by Contract (SbC)
	Specification of the data elements
	Axioms
	Axioms
	Simple Export Interfaces
	Specification by contract of classes
	Export Interfaces described by State Machines
	Example. Memory Cell
	Memory cell as a labelled state machine
	Forwarded calls
	Example. Account manager
	Example. Account manager
	Specification by contract
	Example. Account manager (continued)
	Forwarded Calls, Back-Calls, and Call Stack
	Account manager (continued)
	Example: Account manager (continued): Call forwarding
	Why simple (export only) classes are not enough
	Open View: Components with Export and Import
	Syntax of export/import interface
	Components in OO with Multiple Sub-Interfaces
	Composition
	Design By Contract: Example. Account manager (ctd)
	Import part
	Design By Contract: Example. Account manager (ctd)
	DbC for Export/Import components
	Remarks
	An example in TLA - taken from Leslie’s book
	Remarks
	Components in OO with Multiple Sub-Interfaces
	Composition
	Composition for Export/Import Components
	Verification of composed components
	DbC for architectures export/import components
	A fresh approach
	In- and Out-Messages for a method header
	Sets of messages
	Example. Account manager (continued)
	Again the state machine
	Modelling Export/Import Interfaces by I/O Machines
	Export/import state machine
	Composition of the two state machines
	Interface Abstraction by Functions on Streams
	Observable Equivalence
	Account manager (continued)
	Concluding Remarks

