Isar — A language for structured proofs
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unreadable
hard to maintain
do not scale

Apply scripts

NoO structure!
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Apply scripts versus Isar proofs

Apply script = assembly language program



Apply scripts versus Isar proofs

Apply script = assembly language program
|sar proof = structured program with comments
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Apply scripts versus Isar proofs

Apply script = assembly language program
|sar proof = structured program with comments

But: apply still useful for proof exploration

-p.3



A typical Isar proof

proof
assume formulay
have formula; by SImp

have formula, by blast
show formula,11 by ...
ged
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A typical Isar proof

proof
assume formulay
have formula; by SIMp

have formula, by blast
show formula,11 by ...
ged

proves formulag — formula,+1
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Basic Isar
Propositional logic
Predicate logic

Overview
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|sar core syntax

proof = proof [method] statement* ged
| by method



proof

method

|sar core syntax

proof [method] statement* ged
by method

= (simp...)|(blast...) | (rule...)|...
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|sar core syntax

proof = proof [method] statement* ged
| by method

method = (simp...)|(blast...)|(rule...)]...

statement = fix variables (\)
| assume proposition (=)
|

[from name™] (have | show) proposition proof
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|sar core syntax

proof = proof [method] statement* ged
| by method

method = (simp...)|(blast...)|(rule...)]...

statement = fix variables (A)

assume Proposition (=)

[from name™] (have | show) proposition proof
next (separates subgoals)
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|sar core syntax

proof = proof [method] statement* ged
| by method

method = (simp...)|(blast...)|(rule...)]...

statement = fix variables (A)
assume Proposition (=)
[from name™] (have | show) proposition proof
next (separates subgoals)

proposition = [name:] formula
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Demo: propositional logic, introduction rules
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Basic proof methods

Basic atomic proof:

Dy method
apply method, then prove all subgoals by assumption
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Basic proof methods

Basic atomic proof:

Dy method

apply method, then prove all subgoals by assumption
Basic proof method:

rule a
apply a rule in a;
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Basic proof methods

Basic atomic proof:

Dy method
apply method, then prove all subgoals by assumption

Basic proof method:

rule a
apply a rule in a;
If @ 1s empty: apply a standard elim or intro rule.
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Basic proof methods

Basic atomic proof:

Dy method
apply method, then prove all subgoals by assumption

Basic proof method:
rule a
apply a rule in a;
If @ 1s empty: apply a standard elim or intro rule.

Abbreviations:
= by do-nothing
= by rule



Demo: propositional logic, elimination rules
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Elimination rules / forward reasoning

Elim rules are triggered by facts fed into a proof:
from a have formula proof
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Elimination rules / forward reasoning

Elim rules are triggered by facts fed into a proof:
from a have formula proof

proof alone abbreviates proof rule
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Elimination rules / forward reasoning

Elim rules are triggered by facts fed into a proof:
from a have formula proof

proof alone abbreviates proof rule
rule: tries elim rules first (if there are incoming facts a')
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Elimination rules / forward reasoning

Elim rules are triggered by facts fed into a proof:
from a have formula proof

proof alone abbreviates proof rule
rule: tries elim rules first (if there are incoming facts a')

from @ have formula proof (rule rule)
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Elimination rules / forward reasoning

Elim rules are triggered by facts fed into a proof:
from a have formula proof

proof alone abbreviates proof rule
rule: tries elim rules first (if there are incoming facts a')

from @ have formula proof (rule rule)
a must prove the first n premises of rule,
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Elimination rules / forward reasoning

Elim rules are triggered by facts fed into a proof:
from a have formula proof

proof alone abbreviates proof rule
rule: tries elim rules first (if there are incoming facts a')

from @ have formula proof (rule rule)
a must prove the first n premises of rule, in the right order
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Elimination rules / forward reasoning

Elim rules are triggered by facts fed into a proof:
from a have formula proof

proof alone abbreviates proof rule
rule: tries elim rules first (if there are incoming facts a')

from @ have formula proof (rule rule)
a must prove the first n premises of rule, in the right order

the others are left as new subgoals
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Abbreviations

this = the previous proposition proved or assumed
then = from this
thus = then show

hence = then have

with @ = from d this
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using

First the what, then the how:

(have|show) proposition using facts
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using

First the what, then the how:

(have|show) proposition using facts

from facts (have|show) proposition
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using

First the what, then the how:

(have|show) proposition using facts

from facts (have|show) proposition

Can be mixed:

from major-facts (have|show) proposition using minor-facts

-p.12



using

First the what, then the how:

(have|show) proposition using facts

from facts (have|show) proposition

Can be mixed:

from major-facts (have|show) proposition using minor-facts

from major-facts minor-facts (have|show) proposition
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Demo: avoiding duplication



Schematic term variables

?A
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Schematic term variables

?A

Defined by pattern matching:
X=0Ay=1(is?AAN_)



Schematic term variables

?A

Defined by pattern matching:
X=0Ay=1(is?AAN_)

Predefined: ?thesis
The last enclosing show formula
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Demo: predicate calculus
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obtain

Syntax:

obtain variables where proposition proof
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from ...
have ...

apply -

apply(. ..

apply(. . .

done

Mixing proof styles

make Incoming facts assumptions
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Advanced Isar
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Overview

Case distinction
Induction
Calculational reasoning
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Case distinction



Boolean case distinction

proof Cases
assume formula

next
assume — formula

ged
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Boolean case distinction

proof cases proof (cases formula)
assume formula case Irue

next next
assume — formula case False

ged ged
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Boolean case distinction

proof cases proof (cases formula)
assume formula case Irue
next next
assume — formula case False
ged ged
case True =

assume True: formula

-p.21



Demo: case distinction
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Datatype case distinction

proof (cases term)
case Constructor

next

next
case (Constructor,, )

ged
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Datatype case distinction

proof (cases term)
case Constructor

next

next
case (Constructor,, )

ged
case (Constructor; ) =

fix ¥ assume Constructor ;. term = (Constructor; ¥)
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Induction
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Overview

Structural induction
Rule induction
Induction with recdef
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Structural induction for type nat

show P(n)
proof (Induction n)
case 0

show ?case
next
case (Suc n)

. n ...
show ?7case
ged
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Structural induction for type nat

show P(n)
proof (Induction n)
case 0

show ?case
next
case (Suc n)

. n ...
show ?7case
ged

let 7case = P(0)
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Structural induction for type nat

show P(n)
proof (Induction n)
case 0

let 7case = P(0)

show ?case
next
case (Suc n)

fix N assume Suc: P(Nn)
let 7case = P(Suc n)
- N ---
show ?7case
ged
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Demo: structural induction
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Structural induction with = and A\

show AX. A(n) = P(n)
proof (Induction n)
case 0

show ?case
next
case (Suc n)

show ?case
ged
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Structural induction with = and

show AX. A(n) = P(n)
proof (Induction n)
case 0

show ?case
next
case (Suc n)

show ?case
ged

fix X assume 0: A(0)
let ?case = P(0)
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Structural induction with = and

show AX. A(n) = P(n)
proof (Induction n)

case O = fix X assume 0: A(O)
. let ?case = P(0)
show ?case
next
case (Suc n) = fix N X
. assume Suc: Ax. A(n) = P(n)
.n--. A(Suc n)

. let ?case = P(Suc n)
show ?case
ged
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A remark on style

case (Suc n) ...show ?case
IS easy to write and maintain
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A remark on style

case (Suc n) ...show ?case
IS easy to write and maintain

fix N assume formula ...show formulad’
IS easler to read:

all information is shown locally
no contextual references (e.g. ?case)
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Demo: structural induction with =—- and A
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Rule induction
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Inductive definition

inductive S
INntros
rule;: [se S;A]=5s' €S

rule,: ...
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Rule induction

show X € S = P(X)
proof (Induct rule: S.induct)
case rule

show ?7case
next

next
case rule,,

show ?7case
ged
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Implicit selection of induction rule

assume A: X € S

show P(X)
using A proof Induct

ged
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Implicit selection of induction rule

assume A: X € S lemma assumes A: X € S shows P(X)
using A proof Induct

show P(X)
using A proof Induct  ged

ged
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Renaming free variables in rule

case (I’UIGZ' X1 ... Xk)

Renames the (alphabetically!) first k& variables in rule; to

X1 ... XE.
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Demo: rule induction
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Induction with recdef

Definition:
recdef f
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Induction with recdef

Definition:
recdef f

Proof:
show ... f(...) ...
proof (Induction Xy ... X; rule: f.induct)
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Induction with recdef

Definition:
recdef f

Proof:
show ... f(...) ...
proof (Induction Xy ... X; rule: f.induct)

case 1
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Induction with recdef

Definition:
recdef f

Proof:
show ... f(...) ...
proof (Induction Xy ... X; rule: f.induct)

case 1

Case i refers to equation i in the definition of f
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Induction with recdef

Definition:
recdef f

Proof:
show ... f(...) ...
proof (Induction Xy ... X; rule: f.induct)

case 1

Case i refers to equation i in the definition of f
More precisely: to equation i in f.simps
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Demo: iInduction with recdef



Calculational Reasoning
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Overview

Accumulating facts
Chains of equations and inequations
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have formulay ...
moreover
have formulas ...
moreover

moreover

have formula,, ...
ultimately show . ..

— pipes facts formulaq
proof

moreover

... formula, INto the proof
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have "tg = t1"
also
have "...= 5"
also

also

have "...=t,"

also
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have "tg = t1"
also

have "...= 5"
also

also

have "...=t,"

also
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have "tg = t1"
also

have "...= 5"
also

also
have "...=t,"

also

I
Ny
—_
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also

have "tg = t1"

also

have "...= t9" =11
also

also

have "...= ¢, .... U

finally show . . ..
— pipes fact ¢ty = t,, Into the proof
proof
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“..."1s merely an abbreviation
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Demo: moreover and also
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Variations on also

Transitivity:

have "tg = t1"

also have "... = t9"
alsof/finally ~»
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Variations on also

Transitivity:

have "tg = t1"

also have "... = t9"
alsoffinally ~» to = t9
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Variations on also

Transitivity:

have "tg = t1"

also have "... = t9"
alsoffinally ~» to = t9

Substitution:

have " P(s)"
also have "s = ¢"
alsof/finally ~»
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Variations on also

Transitivity:

have "tg = t1"

also have "... = t9"
alsoffinally ~» to = t9

Substitution:

have " P(s)"
also have "s = t"
also/finally ~ P(t)
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From =to < and <

Transitivity:

have "tg < t1"
also have "... < t9"
alsof/finally ~»
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From =to < and <

Transitivity:

have "tg < t1"
also have "... < t9"
alsoffinally ~ tg < to
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Transitivity:

have "tg < t1"
also have "... < t9"
alsoffinally ~ tg < to

Substitution:

From =to < and <

have "r < f(s)" . ...

also have "s < t"
alsof/finally ~»
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From =to < and <

Transitivity:

have "t() < t1" C e e
also have "... <t ....
alsoffinally ~ tg < to

Substitution:

have "r < f(s)" . ...
also have "s < t" . ...
alsoffinally ~ (AX. X<y = f(X) < f(Yy)) = r < f(t)
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From =to < and <

Transitivity:

have "t() < t1" C e e
also have "... <t ....
alsoffinally ~ tg < to

Substitution:

have "r < f(s)" . ...
also have "s < t" . ...
alsoffinally ~ (AX. X<y = f(X) < f(Yy)) = r < f(t)

Similar for all other combinations of =, < and <.
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All about also

To view all combinations in Proof General:
Isabelle/lsar — Show me — Transitivity rules
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Demo: monotonicity reasoning
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