Isar - A language for structured proofs

Apply scripts

- unreadable

Apply scripts

- unreadable
- hard to maintain

Apply scripts

- unreadable
- hard to maintain
- do not scale

Apply scripts

- unreadable
- hard to maintain
- do not scale

No structure!

Apply scripts versus Isar proofs

Apply script = assembly language program

Apply scripts versus Isar proofs

Apply script = assembly language program
Isar proof = structured program with comments

Apply scripts versus Isar proofs

Apply script = assembly language program
Isar proof = structured program with comments
But: apply still useful for proof exploration

A typical Isar proof

proof
assume formula a_{0}
have formula f $_{1}$ by simp
!
have formula a_{n} by blast
show formula a_{n+1} by ...
qed

A typical Isar proof

proof

assume formula a_{0}
have formula a_{1} by simp
!
have formula a_{n} by blast
show formula a_{n+1} by ...
qed
proves formula $a_{0} \Longrightarrow$ formula $_{n+1}$

Overview

- Basic Isar
- Propositional logic
- Predicate logic

Isar core syntax

proof $=$ proof [method] statement* ${ }^{*}$ qed by method

Isar core syntax

proof $=$ proof [method] statement* qed by method

method $=($ simp $\ldots) \mid($ blast $\ldots) \mid($ rule $\ldots) \mid \ldots$

Isar core syntax

```
proof = proof [method] statement* qed
        by method
method = (simp ...)|(blast ...)|(rule ...)|...
statement = fix variables
            assume proposition
                                    (\Longrightarrow)
    [from name }\mp@subsup{}{}{+}\mathrm{ ] (have | show) proposition proof
```


Isar core syntax

$$
\begin{aligned}
\text { proof }= & \text { proof }[\text { method }] \text { statement* } \text { qed } \\
\mid & \text { by method } \\
\text { method } & =(\text { simp } \ldots) \mid(\text { blast } \ldots) \mid(\text { rule } \ldots) \mid \ldots \\
\text { statement } & =\text { fix variables } \\
& \left\lvert\, \begin{array}{ll}
\text { assume proposition } & (\wedge) \\
& \\
& \text { [from name } \left.{ }^{+}\right] \text {(have } \mid \text { show) proposition proof } \\
& \text { next }
\end{array}\right. \text { (separates subgoals) }
\end{aligned}
$$

Isar core syntax

proof $=$ proof [method] statement* qed | by method
method $=($ simp $\ldots) \mid($ blast $\ldots) \mid($ rule $\ldots) \mid \ldots$
statement = fix variables
assume proposition
[from name ${ }^{+}$] (have | show) proposition proof next (separates subgoals)
proposition = [name:] formula

Demo: propositional logic, introduction rules

Basic proof methods

Basic atomic proof:
by method
apply method, then prove all subgoals by assumption

Basic proof methods

Basic atomic proof:
by method
apply method, then prove all subgoals by assumption
Basic proof method:
rule \vec{a} apply a rule in \vec{a};

Basic proof methods

Basic atomic proof:
by method
apply method, then prove all subgoals by assumption
Basic proof method:
rule \vec{a}
apply a rule in \vec{a};
if \vec{a} is empty: apply a standard elim or intro rule.

Basic proof methods

Basic atomic proof:
by method
apply method, then prove all subgoals by assumption
Basic proof method:
rule \vec{a}
apply a rule in \vec{a};
if \vec{a} is empty: apply a standard elim or intro rule.
Abbreviations:
. = by do-nothing
.. = by rule

Demo: propositional logic, elimination rules

Elimination rules / forward reasoning

- Elim rules are triggered by facts fed into a proof: from \vec{a} have formula proof

Elimination rules / forward reasoning

- Elim rules are triggered by facts fed into a proof: from \vec{a} have formula proof
- proof alone abbreviates proof rule

Elimination rules / forward reasoning

- Elim rules are triggered by facts fed into a proof: from \vec{a} have formula proof
- proof alone abbreviates proof rule
- rule: tries elim rules first (if there are incoming facts \vec{a} !)

Elimination rules / forward reasoning

- Elim rules are triggered by facts fed into a proof: from \vec{a} have formula proof
- proof alone abbreviates proof rule
- rule: tries elim rules first (if there are incoming facts \vec{a} !)
- from \vec{a} have formula proof (rule rule)

Elimination rules / forward reasoning

- Elim rules are triggered by facts fed into a proof: from \vec{a} have formula proof
- proof alone abbreviates proof rule
- rule: tries elim rules first (if there are incoming facts \vec{a} !)
- from \vec{a} have formula proof (rule rule)
\vec{a} must prove the first n premises of rule,

Elimination rules / forward reasoning

- Elim rules are triggered by facts fed into a proof: from \vec{a} have formula proof
- proof alone abbreviates proof rule
- rule: tries elim rules first (if there are incoming facts \vec{a} !)
- from \vec{a} have formula proof (rule rule)
\vec{a} must prove the first n premises of rule, in the right order

Elimination rules / forward reasoning

- Elim rules are triggered by facts fed into a proof: from \vec{a} have formula proof
- proof alone abbreviates proof rule
- rule: tries elim rules first (if there are incoming facts \vec{a} !)
- from \vec{a} have formula proof (rule rule)
\vec{a} must prove the first n premises of rule, in the right order the others are left as new subgoals

Abbreviations

this $=$ the previous proposition proved or assumed
then $=$ from this
thus $=$ then show
hence $=$ then have
with $\vec{a}=$ from \vec{a} this

using

First the what, then the how:
(have|show) proposition using facts

using

First the what, then the how:
(have|show) proposition using facts
from facts (have|show) proposition

using

First the what, then the how:
(have|show) proposition using facts
from facts (have|show) proposition
Can be mixed:
from major-facts (have|show) proposition using minor-facts

using

First the what, then the how:
(have|show) proposition using facts
from facts (have|show) proposition
Can be mixed:
from major-facts (have|show) proposition using minor-facts =
from major-facts minor-facts (have|show) proposition

Demo: avoiding duplication

Schematic term variables

?A

Schematic term variables

?A

- Defined by pattern matching:

$$
x=0 \wedge y=1\left(\text { is } ? A \wedge _\right)
$$

Schematic term variables

?A

- Defined by pattern matching:

$$
x=0 \wedge y=1\left(\text { is } ? A \wedge _\right)
$$

- Predefined: ?thesis

The last enclosing show formula

Demo: predicate calculus

obtain

Syntax:

obtain variables where proposition proof

Mixing proof styles

from ...
have ...

```
apply - make incoming facts assumptions
apply(...)
\vdots
    apply(...)
    done
```


Advanced Isar

Overview

- Case distinction
- Induction
- Calculational reasoning

Case distinction

Boolean case distinction

proof cases

assume formula
next
assume \neg formula
qed

Boolean case distinction

proof cases assume formula
next
assume \neg formula
qed
proof (cases formula) case True
next
case False
qed

Boolean case distinction

proof cases assume formula
next
assume \neg formula
qed
proof (cases formula) case True
next
case False
qed
case True \equiv
assume True: formula

Demo: case distinction

Datatype case distinction

proof (cases term) case Constructor ${ }_{1}$
next
:
next
case (Constructor ${ }_{k} \vec{x}$)
... \vec{x}...
qed

Datatype case distinction

proof (cases term) case Constructor ${ }_{1}$
next
:
next
case (Constructor ${ }_{k} \vec{x}$)
... \vec{x}...
qed
case (Constructor ${ }_{i} \vec{x}$) \equiv
fix \vec{x} assume Constructor ${ }_{i}:$ term $=\left(\right.$ Constructor $\left._{i} \vec{x}\right)$

Induction

Overview

- Structural induction
- Rule induction
- Induction with recdef

Structural induction for type nat

show $P(n)$
proof (induction n)
case 0
show ?case
next
case (Suc n)
... n ...
show ?case
qed

Structural induction for type nat

show $P(n)$
proof (induction n)
case 0

$$
\equiv \text { let ?case }=P(0)
$$

show ?case
next
case (Suc n)
... n ...
show ?case qed

Structural induction for type nat

show $P(n)$
proof (induction n)
case 0

$$
\equiv \text { let ?case }=P(0)
$$

show ?case
next

$$
\begin{array}{ll}
\text { case (Suc } n) & \text { fix } n \text { assume Suc: } P(n) \\
\ldots & \text { let ?case }=P(\text { Suc } n)
\end{array}
$$

... n ...
show ?case
qed

Demo: structural induction

Structural induction with \Longrightarrow and \wedge

show $\wedge x . A(n) \Longrightarrow P(n)$
proof (induction n)
case 0
show ?case
next
case (Suc n)
... n...
show ?case
qed

Structural induction with \Longrightarrow and \wedge

show $\wedge x . A(n) \Longrightarrow P(n)$
proof (induction n)
case 0
...
show ?case
next
case (Suc n)
$\cdots n .$.
show ?case qed

$$
\begin{aligned}
& \equiv \text { fix } x \text { assume } 0: A(0) \\
& \text { let ?case }=P(0)
\end{aligned}
$$

Structural induction with \Longrightarrow and \wedge

show $\wedge x . A(n) \Longrightarrow P(n)$ proof (induction n)
case 0
...
show ?case
next
case (Suc n)
... \quad...
show ?case qed

$$
\begin{aligned}
& \equiv \text { fix } x \text { assume } 0: A(0) \\
& \text { let ?case }=P(0)
\end{aligned}
$$

$\equiv \operatorname{fix} n x$
assume Suc: $\wedge x . A(n) \Longrightarrow P(n)$ $A($ Suc $n)$
let ?case $=P($ Suc $n)$

A remark on style

- case (Suc n) ... show ?case is easy to write and maintain

A remark on style

- case (Suc n) ... show ?case is easy to write and maintain
- fix n assume formula ... show formula ${ }^{\prime}$ is easier to read:
- all information is shown locally
- no contextual references (e.g. ?case)

Demo: structural induction with \Longrightarrow and \wedge

Rule induction

Inductive definition

inductive S

intros
rule $_{1}: \llbracket s \in S ; A \rrbracket \Longrightarrow s^{\prime} \in S$
:
rule ${ }_{n}$: ...

Rule induction

```
show }x\inS\LongrightarrowP(x
    case rule.
    show ?case
next
next
    case rulen
    show ?case
qed
```

proof (induct rule: S.induct)

Implicit selection of induction rule

```
assume A: x 
!
show P(x)
using A proof induct
:
qed
```


Implicit selection of induction rule

Renaming free variables in rule

case $\left(\right.$ rule $\left._{i} x_{1} \ldots x_{k}\right)$
Renames the (alphabetically!) first k variables in rule i_{i} to $x_{1} \ldots x_{k}$.

Demo: rule induction

Induction with recdef

Definition:
recdef f

Induction with recdef

Definition:
recdef f

```
Proof:
show ... \(f(\ldots) \ldots\)
proof (induction \(x_{1} \ldots x_{k}\) rule: f.induct)
```


Induction with recdef

Definition:
recdef f

Proof:
show ... $f(\ldots) \ldots$
proof (induction $x_{1} \ldots x_{k}$ rule: f.induct)
case 1

Induction with recdef

Definition:
recdef f

Proof:
show ... $f(\ldots) \ldots$
proof (induction $x_{1} \ldots x_{k}$ rule: f.induct)
case 1

Case i refers to equation i in the definition of f

Induction with recdef

Definition:
recdef f

Proof:
show ... $f(\ldots) \ldots$
proof (induction $x_{1} \ldots x_{k}$ rule: f.induct)
case 1

Case i refers to equation i in the definition of f More precisely: to equation i in f.simps

Demo: induction with recdef

Calculational Reasoning

Overview

- Accumulating facts
- Chains of equations and inequations

moreover

```
have formula 1 ...
moreover
have formula, ...
moreover
:
moreover
have formulan ...
ultimately show ...
_ pipes facts formula . .. formula in into the proof
proof
```


also

```
have "t}\mp@subsup{t}{0}{}=\mp@subsup{t}{1}{\prime" . . . .
also
have ". . = = t2" . . . .
also
#
also
have ". . = = tn" . . . .
```


also

```
have " }\mp@subsup{t}{0}{}=\mp@subsup{t}{1}{\prime}\mathrm{ " . . . .
also
have "...= t2" . . . ... \equiv t 
also
#
also
have ". . = = tn" . . . .
```


also

```
have "t}\mp@subsup{t}{0}{}=\mp@subsup{t}{1}{\prime}\mathrm{ " . . . .
also
have "...= t2" . . . ... \equiv t t 
also
#
also
have ". . = = tn" . . . .
... \equiv trn-1
```


also

```
have "t}\mp@subsup{t}{0}{=}\mp@subsup{t}{1}{\prime\prime}...
also
have "...= t2" . . . ... \equiv \t 
also
!
also
have "...= tr" . . . ... \equiv trn-1
finally show
_ pipes fact to = trn into the proof
proof
```

". .." is merely an abbreviation

Demo: moreover and also

Variations on also

Transitivity:

$$
\begin{aligned}
& \text { have " } t_{0}=t_{1} " \ldots \\
& \text { also have ". . }=t_{2} \text { ". . . } \\
& \text { also/finally } \leadsto
\end{aligned}
$$

Variations on also

Transitivity:

$$
\begin{aligned}
& \text { have } " t_{0}=t_{1} " \ldots \\
& \text { also have ". } \quad .=t_{2} " \ldots \\
& \text { also/finally } \leadsto t_{0}=t_{2}
\end{aligned}
$$

Variations on also

Transitivity:

```
have "t}\mp@subsup{t}{0}{=}\mp@subsup{t}{1}{\prime\prime}...
also have "... = t2" . . . .
also/finally }~\mp@subsup{t}{0}{}=\mp@subsup{t}{2}{
```

Substitution:
have " $P(s)$ " . . .
also have " $s=t$ " . . .
also/finally \leadsto

Variations on also

Transitivity:

```
have "t}\mp@subsup{t}{0}{=}\mp@subsup{t}{1}{\prime\prime}...
also have "... = t2" . . . .
also/finally }~\mp@subsup{t}{0}{}=\mp@subsup{t}{2}{
```

Substitution:
have " $P(s)$ "
also have " $s=t$ " . . .
also/finally $\leadsto P(t)$

From $=\boldsymbol{t 0} \leq$ and $<$

Transitivity:

```
have "t}\mp@subsup{t}{0}{}\leq\mp@subsup{t}{1}{\prime" . . . .
also have "... \leq t " " . . .
also/finally }
```


From $=\boldsymbol{t 0} \leq$ and $<$

Transitivity:

```
have " }\mp@subsup{t}{0}{}\leq\mp@subsup{t}{1}{\prime}\mathrm{ " . . . .
also have "... \leq t " " . . .
also/finally }~\mp@subsup{t}{0}{}\leq\mp@subsup{t}{2}{
```


From $=\boldsymbol{t o} \leq$ and $<$

Transitivity:

```
have "t}\mp@subsup{t}{0}{}\leq\mp@subsup{t}{1}{\prime" . . . .
also have "... \leq t " " . . .
also/finally }~\mp@subsup{t}{0}{}\leq\mp@subsup{t}{2}{
```

Substitution:

have " $r \leq f(s)$ " . . .
also have " $s<t$ "
also/finally \leadsto

From $=\boldsymbol{t o} \leq$ and $<$

Transitivity:

have " $t_{0} \leq t_{1}$ " . . .
also have ". . $\leq t_{2}$ "
also/finally $\leadsto t_{0} \leq t_{2}$
Substitution:
have " $r \leq f(s)$ " . . .
also have " $s<t$ "
also/finally $\leadsto(\bigwedge x . x<y \Longrightarrow f(x)<f(y)) \Longrightarrow r<f(t)$

From $=\boldsymbol{t o} \leq$ and $<$

Transitivity:

```
have "t}\mp@subsup{t}{0}{}\leq\mp@subsup{t}{1}{\prime" . . . .
also have "... \leq < t2" . . . .
also/finally }~\mp@subsup{t}{0}{}\leq\mp@subsup{t}{2}{
```

Substitution:

```
have " \(r \leq f(s)\) " . . .
also have " \(s<t\) " . . . .
also/finally \(\leadsto(\bigwedge x . x<y \Longrightarrow f(x)<f(y)) \Longrightarrow r<f(t)\)
```

Similar for all other combinations of $=, \leq$ and $<$.

All about also

To view all combinations in Proof General: Isabelle/lsar \rightarrow Show me \rightarrow Transitivity rules

Demo: monotonicity reasoning

