
Isar — A language for structured proofs

– p.1

Apply scripts

• unreadable

• hard to maintain
• do not scale

No structure!

– p.2

Apply scripts

• unreadable
• hard to maintain

• do not scale

No structure!

– p.2

Apply scripts

• unreadable
• hard to maintain
• do not scale

No structure!

– p.2

Apply scripts

• unreadable
• hard to maintain
• do not scale

No structure!

– p.2

Apply scripts versus Isar proofs

Apply script = assembly language program

Isar proof = structured program with comments

But: apply still useful for proof exploration

– p.3

Apply scripts versus Isar proofs

Apply script = assembly language program

Isar proof = structured program with comments

But: apply still useful for proof exploration

– p.3

Apply scripts versus Isar proofs

Apply script = assembly language program

Isar proof = structured program with comments

But: apply still useful for proof exploration

– p.3

A typical Isar proof

proof

assume formula0

have formula1 by simp
...
have formulan by blast
show formulan+1 by . . .

qed

proves formula0 =⇒ formulan+1

– p.4

A typical Isar proof

proof

assume formula0

have formula1 by simp
...
have formulan by blast
show formulan+1 by . . .

qed

proves formula0 =⇒ formulan+1

– p.4

Overview

• Basic Isar
• Propositional logic
• Predicate logic

– p.5

Isar core syntax

proof = proof [method] statement∗ qed

| by method

method = (simp . . .) | (blast . . .) | (rule . . .) | . . .

statement = fix variables (
∧

)
| assume proposition (=⇒)
| [from name+] (have | show) proposition proof
| next (separates subgoals)

proposition = [name:] formula

– p.6

Isar core syntax

proof = proof [method] statement∗ qed

| by method

method = (simp . . .) | (blast . . .) | (rule . . .) | . . .

statement = fix variables (
∧

)
| assume proposition (=⇒)
| [from name+] (have | show) proposition proof
| next (separates subgoals)

proposition = [name:] formula

– p.6

Isar core syntax

proof = proof [method] statement∗ qed

| by method

method = (simp . . .) | (blast . . .) | (rule . . .) | . . .

statement = fix variables (
∧

)
| assume proposition (=⇒)
| [from name+] (have | show) proposition proof

| next (separates subgoals)

proposition = [name:] formula

– p.6

Isar core syntax

proof = proof [method] statement∗ qed

| by method

method = (simp . . .) | (blast . . .) | (rule . . .) | . . .

statement = fix variables (
∧

)
| assume proposition (=⇒)
| [from name+] (have | show) proposition proof
| next (separates subgoals)

proposition = [name:] formula

– p.6

Isar core syntax

proof = proof [method] statement∗ qed

| by method

method = (simp . . .) | (blast . . .) | (rule . . .) | . . .

statement = fix variables (
∧

)
| assume proposition (=⇒)
| [from name+] (have | show) proposition proof
| next (separates subgoals)

proposition = [name:] formula

– p.6

Demo: propositional logic, introduction rules

– p.7

Basic proof methods

Basic atomic proof:

by method

apply method, then prove all subgoals by assumption

Basic proof method:

rule ~a

apply a rule in ~a;
if ~a is empty: apply a standard elim or intro rule.

Abbreviations:
. = by do-nothing

.. = by rule

– p.8

Basic proof methods

Basic atomic proof:

by method

apply method, then prove all subgoals by assumption

Basic proof method:

rule ~a

apply a rule in ~a;

if ~a is empty: apply a standard elim or intro rule.

Abbreviations:
. = by do-nothing

.. = by rule

– p.8

Basic proof methods

Basic atomic proof:

by method

apply method, then prove all subgoals by assumption

Basic proof method:

rule ~a

apply a rule in ~a;
if ~a is empty: apply a standard elim or intro rule.

Abbreviations:
. = by do-nothing

.. = by rule

– p.8

Basic proof methods

Basic atomic proof:

by method

apply method, then prove all subgoals by assumption

Basic proof method:

rule ~a

apply a rule in ~a;
if ~a is empty: apply a standard elim or intro rule.

Abbreviations:
. = by do-nothing

.. = by rule

– p.8

Demo: propositional logic, elimination rules

– p.9

Elimination rules / forward reasoning

• Elim rules are triggered by facts fed into a proof:
from ~a have formula proof

• proof alone abbreviates proof rule
• rule: tries elim rules first (if there are incoming facts ~a!)
• from ~a have formula proof (rule rule)

~a must prove the first n premises of rule, in the right order
the others are left as new subgoals

– p.10

Elimination rules / forward reasoning

• Elim rules are triggered by facts fed into a proof:
from ~a have formula proof

• proof alone abbreviates proof rule

• rule: tries elim rules first (if there are incoming facts ~a!)
• from ~a have formula proof (rule rule)

~a must prove the first n premises of rule, in the right order
the others are left as new subgoals

– p.10

Elimination rules / forward reasoning

• Elim rules are triggered by facts fed into a proof:
from ~a have formula proof

• proof alone abbreviates proof rule
• rule: tries elim rules first (if there are incoming facts ~a!)

• from ~a have formula proof (rule rule)
~a must prove the first n premises of rule, in the right order
the others are left as new subgoals

– p.10

Elimination rules / forward reasoning

• Elim rules are triggered by facts fed into a proof:
from ~a have formula proof

• proof alone abbreviates proof rule
• rule: tries elim rules first (if there are incoming facts ~a!)
• from ~a have formula proof (rule rule)

~a must prove the first n premises of rule, in the right order
the others are left as new subgoals

– p.10

Elimination rules / forward reasoning

• Elim rules are triggered by facts fed into a proof:
from ~a have formula proof

• proof alone abbreviates proof rule
• rule: tries elim rules first (if there are incoming facts ~a!)
• from ~a have formula proof (rule rule)

~a must prove the first n premises of rule,

in the right order
the others are left as new subgoals

– p.10

Elimination rules / forward reasoning

• Elim rules are triggered by facts fed into a proof:
from ~a have formula proof

• proof alone abbreviates proof rule
• rule: tries elim rules first (if there are incoming facts ~a!)
• from ~a have formula proof (rule rule)

~a must prove the first n premises of rule, in the right order

the others are left as new subgoals

– p.10

Elimination rules / forward reasoning

• Elim rules are triggered by facts fed into a proof:
from ~a have formula proof

• proof alone abbreviates proof rule
• rule: tries elim rules first (if there are incoming facts ~a!)
• from ~a have formula proof (rule rule)

~a must prove the first n premises of rule, in the right order
the others are left as new subgoals

– p.10

Abbreviations

this = the previous proposition proved or assumed
then = from this
thus = then show

hence = then have

with ~a = from ~a this

– p.11

using

First the what, then the how:

(have|show) proposition using facts

=
from facts (have|show) proposition

Can be mixed:

from major-facts (have|show) proposition using minor-facts
=

from major-facts minor-facts (have|show) proposition

– p.12

using

First the what, then the how:

(have|show) proposition using facts
=

from facts (have|show) proposition

Can be mixed:

from major-facts (have|show) proposition using minor-facts
=

from major-facts minor-facts (have|show) proposition

– p.12

using

First the what, then the how:

(have|show) proposition using facts
=

from facts (have|show) proposition

Can be mixed:

from major-facts (have|show) proposition using minor-facts

=
from major-facts minor-facts (have|show) proposition

– p.12

using

First the what, then the how:

(have|show) proposition using facts
=

from facts (have|show) proposition

Can be mixed:

from major-facts (have|show) proposition using minor-facts
=

from major-facts minor-facts (have|show) proposition

– p.12

Demo: avoiding duplication

– p.13

Schematic term variables

?A

• Defined by pattern matching:

x = 0 ∧ y = 1 (is ?A ∧ _)

• Predefined: ?thesis
The last enclosing show formula

– p.14

Schematic term variables

?A

• Defined by pattern matching:

x = 0 ∧ y = 1 (is ?A ∧ _)

• Predefined: ?thesis
The last enclosing show formula

– p.14

Schematic term variables

?A

• Defined by pattern matching:

x = 0 ∧ y = 1 (is ?A ∧ _)
• Predefined: ?thesis

The last enclosing show formula

– p.14

Demo: predicate calculus

– p.15

obtain

Syntax:

obtain variables where proposition proof

– p.16

Mixing proof styles

from . . .
have . . .

apply - make incoming facts assumptions
apply(. . .)
...
apply(. . .)
done

– p.17

Advanced Isar

– p.18

Overview

• Case distinction
• Induction
• Calculational reasoning

– p.19

Case distinction

– p.20

Boolean case distinction

proof cases
assume formula
...

next

assume ¬formula
...

qed

proof (cases formula)
case True
...

next

case False
...

qed

case True ≡

assume True: formula

– p.21

Boolean case distinction

proof cases
assume formula
...

next

assume ¬formula
...

qed

proof (cases formula)
case True
...

next

case False
...

qed

case True ≡

assume True: formula

– p.21

Boolean case distinction

proof cases
assume formula
...

next

assume ¬formula
...

qed

proof (cases formula)
case True
...

next

case False
...

qed

case True ≡

assume True: formula

– p.21

Demo: case distinction

– p.22

Datatype case distinction

proof (cases term)
case Constructor 1

...
next
...
next

case (Constructor k ~x)
· · · ~x · · ·

qed

case (Constructor i ~x) ≡

fix ~x assume Constructor i: term = (Constructor i ~x)

– p.23

Datatype case distinction

proof (cases term)
case Constructor 1

...
next
...
next

case (Constructor k ~x)
· · · ~x · · ·

qed

case (Constructor i ~x) ≡

fix ~x assume Constructor i: term = (Constructor i ~x)
– p.23

Induction

– p.24

Overview

• Structural induction
• Rule induction
• Induction with recdef

– p.25

Structural induction for type nat

show P (n)

proof (induction n)
case 0

≡ let ?case = P (0)

. . .
show ?case

next

case (Suc n)

≡ fix n assume Suc: P (n)

. . .

let ?case = P (Suc n)

· · · n · · ·

show ?case
qed

– p.26

Structural induction for type nat

show P (n)

proof (induction n)
case 0 ≡ let ?case = P (0)

. . .
show ?case

next

case (Suc n)

≡ fix n assume Suc: P (n)

. . .

let ?case = P (Suc n)

· · · n · · ·

show ?case
qed

– p.26

Structural induction for type nat

show P (n)

proof (induction n)
case 0 ≡ let ?case = P (0)

. . .
show ?case

next

case (Suc n) ≡ fix n assume Suc: P (n)

. . . let ?case = P (Suc n)

· · · n · · ·

show ?case
qed

– p.26

Demo: structural induction

– p.27

Structural induction with =⇒ and
∧

show
∧

x. A(n) =⇒ P(n)
proof (induction n)

case 0

≡ fix x assume 0: A(0)

. . .

let ?case = P(0)

show ?case
next

case (Suc n)

≡ fix n x

. . .

assume Suc:
∧

x. A(n) =⇒ P(n)

· · · n · · ·

A(Suc n)

. . .

let ?case = P(Suc n)

show ?case
qed – p.28

Structural induction with =⇒ and
∧

show
∧

x. A(n) =⇒ P(n)
proof (induction n)

case 0 ≡ fix x assume 0: A(0)
. . . let ?case = P(0)
show ?case

next

case (Suc n)

≡ fix n x

. . .

assume Suc:
∧

x. A(n) =⇒ P(n)

· · · n · · ·

A(Suc n)

. . .

let ?case = P(Suc n)

show ?case
qed – p.28

Structural induction with =⇒ and
∧

show
∧

x. A(n) =⇒ P(n)
proof (induction n)

case 0 ≡ fix x assume 0: A(0)
. . . let ?case = P(0)
show ?case

next

case (Suc n) ≡ fix n x
. . . assume Suc:

∧
x. A(n) =⇒ P(n)

· · · n · · · A(Suc n)
. . . let ?case = P(Suc n)
show ?case

qed – p.28

A remark on style

• case (Suc n) . . . show ?case
is easy to write and maintain

• fix n assume formula . . . show formula′

is easier to read:
• all information is shown locally
• no contextual references (e.g. ?case)

– p.29

A remark on style

• case (Suc n) . . . show ?case
is easy to write and maintain

• fix n assume formula . . . show formula′

is easier to read:
• all information is shown locally
• no contextual references (e.g. ?case)

– p.29

Demo: structural induction with =⇒ and
∧

– p.30

Rule induction

– p.31

Inductive definition

inductive S
intros

rule1: [[s ∈ S; A]] =⇒ s’ ∈ S
...
rulen: . . .

– p.32

Rule induction

show x ∈ S =⇒ P(x)
proof (induct rule: S.induct)

case rule1

. . .
show ?case

next
...
next

case rulen

. . .
show ?case

qed
– p.33

Implicit selection of induction rule

assume A: x ∈ S
...
show P(x)
using A proof induct
...
qed

lemma assumes A: x ∈ S shows P(x)
using A proof induct
...
qed

– p.34

Implicit selection of induction rule

assume A: x ∈ S
...
show P(x)
using A proof induct
...
qed

lemma assumes A: x ∈ S shows P(x)
using A proof induct
...
qed

– p.34

Renaming free variables in rule

case (rulei x1 . . . xk)

Renames the (alphabetically!) first k variables in rulei to

x1 . . . xk.

– p.35

Demo: rule induction

– p.36

Induction with recdef

Definition:
recdef f
...

Proof:
show . . . f(. . .) . . .

proof (induction x1 . . . xk rule: f.induct)

case 1
...

Case i refers to equation i in the definition of f
More precisely: to equation i in f.simps

– p.37

Induction with recdef

Definition:
recdef f
...

Proof:
show . . . f(. . .) . . .

proof (induction x1 . . . xk rule: f.induct)

case 1
...

Case i refers to equation i in the definition of f
More precisely: to equation i in f.simps

– p.37

Induction with recdef

Definition:
recdef f
...

Proof:
show . . . f(. . .) . . .

proof (induction x1 . . . xk rule: f.induct)

case 1
...

Case i refers to equation i in the definition of f
More precisely: to equation i in f.simps

– p.37

Induction with recdef

Definition:
recdef f
...

Proof:
show . . . f(. . .) . . .

proof (induction x1 . . . xk rule: f.induct)

case 1
...

Case i refers to equation i in the definition of f

More precisely: to equation i in f.simps

– p.37

Induction with recdef

Definition:
recdef f
...

Proof:
show . . . f(. . .) . . .

proof (induction x1 . . . xk rule: f.induct)

case 1
...

Case i refers to equation i in the definition of f
More precisely: to equation i in f.simps

– p.37

Demo: induction with recdef

– p.38

Calculational Reasoning

– p.39

Overview

• Accumulating facts
• Chains of equations and inequations

– p.40

moreover

have formula1 . . .
moreover

have formula2 . . .
moreover
...
moreover

have formulan . . .
ultimately show . . .
— pipes facts formula1 . . . formulan into the proof
proof
...

– p.41

also

have "t0 = t1"
also

have " . . . = t2"

. . . ≡ t1

also
...
also

have " . . . = tn"

. . . ≡ tn−1

finally show
— pipes fact t0 = tn into the proof
proof
...

– p.42

also

have "t0 = t1"
also

have " . . . = t2" ≡ t1

also
...
also

have " . . . = tn"

. . . ≡ tn−1

finally show
— pipes fact t0 = tn into the proof
proof
...

– p.42

also

have "t0 = t1"
also

have " . . . = t2" ≡ t1

also
...
also

have " . . . = tn" ≡ tn−1

finally show
— pipes fact t0 = tn into the proof
proof
...

– p.42

also

have "t0 = t1"
also

have " . . . = t2" ≡ t1

also
...
also

have " . . . = tn" ≡ tn−1

finally show
— pipes fact t0 = tn into the proof
proof
...

– p.42

. . .

“. . . ” is merely an abbreviation

– p.43

Demo: moreover and also

– p.44

Variations on also

Transitivity:

have "t0 = t1"
also have " . . . = t2"
also/finally ;

t0 = t2

Substitution:

have "P (s)"
also have "s = t"
also/finally ; P (t)

– p.45

Variations on also

Transitivity:

have "t0 = t1"
also have " . . . = t2"
also/finally ; t0 = t2

Substitution:

have "P (s)"
also have "s = t"
also/finally ; P (t)

– p.45

Variations on also

Transitivity:

have "t0 = t1"
also have " . . . = t2"
also/finally ; t0 = t2

Substitution:

have "P (s)"
also have "s = t"
also/finally ;

P (t)

– p.45

Variations on also

Transitivity:

have "t0 = t1"
also have " . . . = t2"
also/finally ; t0 = t2

Substitution:

have "P (s)"
also have "s = t"
also/finally ; P (t)

– p.45

From = to ≤ and <

Transitivity:

have "t0 ≤ t1"
also have " . . . ≤ t2"
also/finally ;

t0 ≤ t2

Substitution:

have "r ≤ f(s)"
also have "s < t"
also/finally ; (

∧
x. x < y =⇒ f(x) < f(y)) =⇒ r < f(t)

Similar for all other combinations of =, ≤ and <.

– p.46

From = to ≤ and <

Transitivity:

have "t0 ≤ t1"
also have " . . . ≤ t2"
also/finally ; t0 ≤ t2

Substitution:

have "r ≤ f(s)"
also have "s < t"
also/finally ; (

∧
x. x < y =⇒ f(x) < f(y)) =⇒ r < f(t)

Similar for all other combinations of =, ≤ and <.

– p.46

From = to ≤ and <

Transitivity:

have "t0 ≤ t1"
also have " . . . ≤ t2"
also/finally ; t0 ≤ t2

Substitution:

have "r ≤ f(s)"
also have "s < t"
also/finally ;

(
∧

x. x < y =⇒ f(x) < f(y)) =⇒ r < f(t)

Similar for all other combinations of =, ≤ and <.

– p.46

From = to ≤ and <

Transitivity:

have "t0 ≤ t1"
also have " . . . ≤ t2"
also/finally ; t0 ≤ t2

Substitution:

have "r ≤ f(s)"
also have "s < t"
also/finally ; (

∧
x. x < y =⇒ f(x) < f(y)) =⇒ r < f(t)

Similar for all other combinations of =, ≤ and <.

– p.46

From = to ≤ and <

Transitivity:

have "t0 ≤ t1"
also have " . . . ≤ t2"
also/finally ; t0 ≤ t2

Substitution:

have "r ≤ f(s)"
also have "s < t"
also/finally ; (

∧
x. x < y =⇒ f(x) < f(y)) =⇒ r < f(t)

Similar for all other combinations of =, ≤ and <.

– p.46

All about also

To view all combinations in Proof General:

Isabelle/Isar → Show me → Transitivity rules

– p.47

Demo: monotonicity reasoning

– p.48

		extcolor {darkblue}{Apply scripts}
		extcolor {darkblue}{Apply scripts versus Isar proofs}
		extcolor {darkblue}{A typical Isar proof}
		extcolor {darkblue}{Overview}
		extcolor {darkblue}{Isar core syntax}
		extcolor {darkblue}{Basic proof methods}
		extcolor {darkblue}{Elimination rules / forward reasoning}
		extcolor {darkblue}{Abbreviations}
		extcolor {darkblue}{using}
		extcolor {darkblue}{Schematic term variables}
		extcolor {darkblue}{obtain}
		extcolor {darkblue}{Mixing proof styles}
		extcolor {darkblue}{Overview}
		extcolor {darkblue}{Boolean case distinction}
		extcolor {darkblue}{Datatype case distinction}
		extcolor {darkblue}{Overview}
		extcolor {darkblue}{Structural induction for type nat}
		extcolor {darkblue}{Structural induction with isa {{isasymLongrightarrow }} and isa {{isasymAnd }}}
		extcolor {darkblue}{A remark on style}
		extcolor {darkblue}{Inductive definition}
		extcolor {darkblue}{Rule induction}
		extcolor {darkblue}{Implicit selection of induction rule}
		extcolor {darkblue}{Renaming free variables in rule}
		extcolor {darkblue}{Induction with recdef}
		extcolor {darkblue}{Overview}
		extcolor {darkblue}{moreover}
		extcolor {darkblue}{also}
		extcolor {darkblue}{dots }
		extcolor {darkblue}{Variations on also}
		extcolor {darkblue}{From $=$ to $le $ and $<$}
		extcolor {darkblue}{All about also}

