Isar — A language for structured proofs

• unreadable

- unreadable
- hard to maintain

- unreadable
- hard to maintain
- do not scale

- unreadable
- hard to maintain
- do not scale

No structure!

Apply scripts versus Isar proofs

Apply script = assembly language program

Apply scripts versus Isar proofs

Apply script = assembly language program lsar proof = structured program with comments

Apply scripts versus Isar proofs

Apply script = assembly language program lsar proof = structured program with comments

But: apply still useful for proof exploration

A typical Isar proof

proof

assume $formula_0$ have $formula_1$ by simpi have $formula_n$ by blast show $formula_{n+1}$ by ... qed

A typical Isar proof

proof

assume $formula_0$ have $formula_1$ by simp: have $formula_n$ by blastshow $formula_{n+1}$ by qed

proves $formula_0 \Longrightarrow formula_{n+1}$

Overview

- Basic Isar
- Propositional logic
- Predicate logic

proof = proof [method] statement* qed | by method

proof = proof [method] statement* qed | by method

method = (simp ...) | (blast ...) | (rule ...) | ...

- proof = proof [method] statement* qed | by method
- method = (simp ...) | (blast ...) | (rule ...) | ...
- statement=fix variables (\land) |assume proposition (\Longrightarrow) |[from name+] (have | show) proposition proof

- proof = proof [method] statement* qed | by method
- method = (*simp* ...) | (*blast* ...) | (*rule* ...) | ...

- proof = proof [method] statement* qed | by method
- method = (*simp*...) | (*blast*...) | (*rule*...) | ...
- statement=fix variables (\land) |assume proposition (\Longrightarrow) |[from name+] (have | show) proposition proof|next(separates subgoals)

proposition = [name:] formula

Demo: propositional logic, introduction rules

Basic atomic proof:

by *method* apply *method*, then prove all subgoals by assumption

Basic atomic proof:

by *method* apply *method*, then prove all subgoals by assumption

Basic proof method:

rule \vec{a} apply a rule in \vec{a} ;

Basic atomic proof:

by *method* apply *method*, then prove all subgoals by assumption

Basic proof method:

```
rule \vec{a} apply a rule in \vec{a}; if \vec{a} is empty: apply a standard elim or intro rule.
```

Basic atomic proof:

by *method* apply *method*, then prove all subgoals by assumption

Basic proof method:

rule \vec{a} apply a rule in \vec{a} ; if \vec{a} is empty: apply a standard elim or intro rule.

Abbreviations:

- = **by** do-nothing
- $\dots = by rule$

Demo: propositional logic, elimination rules

Elim rules are triggered by facts fed into a proof:
 from a have formula proof

- Elim rules are triggered by facts fed into a proof: from \vec{a} have formula proof
- proof alone abbreviates proof rule

- Elim rules are triggered by facts fed into a proof:
 from a have formula proof
- proof alone abbreviates proof rule
- *rule*: tries elim rules first (if there are incoming facts \vec{a} !)

- Elim rules are triggered by facts fed into a proof:
 from a have formula proof
- proof alone abbreviates proof rule
- *rule*: tries elim rules first (if there are incoming facts \vec{a} !)
- from \vec{a} have formula proof (rule rule)

- Elim rules are triggered by facts fed into a proof: from a have formula proof
- proof alone abbreviates proof rule
- *rule*: tries elim rules first (if there are incoming facts \vec{a} !)
- from \vec{a} have formula proof (rule rule)

 \vec{a} must prove the first n premises of rule,

- Elim rules are triggered by facts fed into a proof:
 from a have formula proof
- proof alone abbreviates proof rule
- *rule*: tries elim rules first (if there are incoming facts \vec{a} !)
- from \vec{a} have formula proof (rule rule)

 \vec{a} must prove the first n premises of rule, in the right order

- Elim rules are triggered by facts fed into a proof:
 from a have formula proof
- proof alone abbreviates proof rule
- *rule*: tries elim rules first (if there are incoming facts \vec{a} !)
- from \vec{a} have formula proof (rule rule)

 \vec{a} must prove the first *n* premises of *rule*, in the right order the others are left as new subgoals

Abbreviations

- *this* = the previous proposition proved or assumed
- then = from this
- thus = then show
- hence = then have
- with \vec{a} = from \vec{a} this

First the what, then the how:

(have|show) proposition using facts

First the what, then the how:

First the what, then the how:

Can be mixed:

from major-facts (have|show) proposition using minor-facts

First the what, then the how:

Can be mixed:

Demo: avoiding duplication

Schematic term variables

?A
Schematic term variables

?A

• Defined by pattern matching:

$$x = 0 \land y = 1$$
 (is $?A \land _$)

Schematic term variables

?A

• Defined by pattern matching:

$$x = 0 \land y = 1$$
 (is $?A \land _$)

Predefined: *?thesis* The last enclosing show formula

Demo: predicate calculus

obtain

Syntax:

obtain variables where proposition proof

Mixing proof styles

```
from ...
have ...
apply - make incoming facts assumptions
apply(...)
:
apply(...)
done
```


Overview

- Case distinction
- Induction
- Calculational reasoning

Case distinction

Boolean case distinction

```
proof CASES
assume formula
...
next
assume ¬formula
...
```

Boolean case distinction

Boolean case distinction

Demo: case distinction

Datatype case distinction

```
proof (Cases term)
   case Constructor<sub>1</sub>
   -
next
next
   case (Constructor k \vec{x})
   \cdots \vec{x} \cdots
qed
```

Datatype case distinction

```
proof (Cases term)
     case Constructor<sub>1</sub>
     next
 next
     case (Constructor k \vec{x})
     \cdots \vec{x} \cdots
 qed
case (Constructor<sub>i</sub> \vec{x}) \equiv
fix \vec{x} assume Constructor<sub>i</sub>: term = (Constructor_i \vec{x})
```

Induction

Overview

- Structural induction
- Rule induction
- Induction with recdef

Structural induction for type nat

```
show P(\mathbf{n})
proof (induction n)
  case 0
   . . .
  show ?case
next
  case (Suc n)
   . . .
  · · · n · · ·
  show ?case
qed
```

Structural induction for type nat

```
show P(\mathbf{n})
proof (induction n)
   case 0
                             \equiv let ?case = P(\mathbf{0})
   . . .
   show ?case
next
  case (Suc n)
   . . .
   · · · n · · ·
   show ?case
qed
```

Structural induction for type nat

show
$$P(n)$$

proof (induction n)
case 0 \equiv let ?case $= P(0)$
...
show ?case
next
case (Suc n) \equiv fix n assume Suc: $P(n)$
...
iet ?case $= P(Suc n)$
 \dots n \dots
show ?case
qed

Demo: structural induction

Structural induction with \Longrightarrow and \land

```
show \bigwedge x. A(n) \Longrightarrow P(n)
proof (induction n)
   case 0
   . . .
   show ?case
next
  case (Suc n)
   . . .
   · · · n · · ·
   - - -
   show ?case
qed
```

Structural induction with \Longrightarrow and \land

```
show \bigwedge x. A(n) \Longrightarrow P(n)
proof (induction n)
  case 0
                                   \equiv fix X assume 0: A(0)
                                        let ?case = P(0)
   . . .
  show ?case
next
  case (Suc n)
   . . .
   · · · n · · ·
   - - -
   show ?case
qed
```

Structural induction with \Longrightarrow and \land

show $\bigwedge x. A(n) \Longrightarrow P(n)$		
proof (Induction n)		
case O	\equiv	fix X assume <i>0:</i> A(0)
		let $?case = P(0)$
show ?case		
next		
case (Suc n)	\equiv	fix n x
		assume Suc: $\bigwedge x. A(n) \Longrightarrow P(n)$
···· n ····		A(Suc n)
		let $?case = P(Suc n)$
show ?case		
qed		

A remark on style

• case (Suc n) ... show ?case is easy to write and maintain

A remark on style

- case (Suc n) ... show ?case is easy to write and maintain
- fix *n* assume *formula* ... show *formula'* is easier to read:
 - all information is shown locally
 - no contextual references (e.g. ?case)

Demo: structural induction with \Longrightarrow and \bigwedge

Rule induction

Inductive definition

inductive Sintros $rule_1 : [[s \in S; A]] \implies s' \in S$: $rule_n : ...$

Rule induction

```
show x \in S \implies P(x)
proof (induct rule: S.induct)
  case rule<sub>1</sub>
   . . .
   show ?case
next
next
```

```
case rule<sub>n</sub>
....
show ?case
qed
```

Implicit selection of induction rule

- assume $A: x \in S$: show P(x)
- using A proof induct

qed

Implicit selection of induction rule

qed

assume $A: x \in S$: show P(x)using A proof induct

lemma assumes $A: x \in S$ shows P(x) using A proof induct

qed

Renaming free variables in rule

case (rule_i $x_1 \dots x_k$)

Renames the (alphabetically!) first k variables in $rule_i$ to $x_1 \dots x_k$.

Demo: rule induction

Induction with recdef

- Definition:
- recdef f
- :

Induction with recdef

- Definition:
- recdef f
- •
- Proof:

show ... f(...) ... proof (induction $x_1 \dots x_k$ rule: f.induct)

Induction with recdef

```
Definition:
recdef f
.
Proof:
show ... f(...) ...
proof (induction x_1 \dots x_k rule: f.induct)
  case 1
```
Induction with recdef

```
Definition:
recdef f
Proof:
show ... f(...) ...
proof (induction x_1 \dots x_k rule: f.induct)
  case 1
```

Case i refers to equation i in the definition of f

Induction with recdef

```
Definition:
recdef f
Proof:
show ... f(...) ...
proof (induction x_1 \dots x_k rule: f.induct)
  case 1
```

Case *i* refers to equation *i* in the definition of *f* More precisely: to equation *i* in *f.simps*

Demo: induction with recdef

Calculational Reasoning

Overview

- Accumulating facts
- Chains of equations and inequations

moreover

have formula₁ ... moreover have formula₂ ... moreover ... moreover

have $formula_n$...

ultimately show

— pipes facts $formula_1 \dots formula_n$ into the proof proof

have	$t_0 = t_1 t_1 \dots t_1$
also	
have	"= t_2 "
also	
:	
also	
have	"= t_n "

have " $t_0 = t_1$ "	
also	
have " = t_2 "	$\ldots \equiv t_1$
also	
:	
also	
have " = t_n "	$\ldots \equiv t_{n-1}$

. . .

"..." is merely an abbreviation

Demo: moreover and also

Transitivity:

have $"t_0 = t_1" \dots$ also have $"\dots = t_2" \dots$ also/finally $\sim \rightarrow$

Transitivity:

have " $t_0 = t_1$ " also have "... = t_2 " also/finally $\rightsquigarrow t_0 = t_2$

Transitivity:

have " $t_0 = t_1$ " also have "... = t_2 " also/finally $\rightsquigarrow t_0 = t_2$

Substitution:

have "P(s)" also have "s = t" also/finally $\sim \rightarrow$

Transitivity:

have " $t_0 = t_1$ " also have "... = t_2 " also/finally $\rightsquigarrow t_0 = t_2$

Substitution:

have "P(s)" also have "s = t" also/finally $\rightsquigarrow P(t)$

Transitivity:

have " $t_0 \le t_1$ " also have "... $\le t_2$ " also/finally \rightsquigarrow

Transitivity:

have " $t_0 \le t_1$ " also have "... $\le t_2$ " also/finally $\rightsquigarrow t_0 \le t_2$

Transitivity:

have " $t_0 \leq t_1$ " also have "... $\leq t_2$ " also/finally $\rightsquigarrow t_0 \leq t_2$

Substitution:

have " $r \leq f(s)$ " also have "s < t" also/finally \rightsquigarrow

Transitivity:

have " $t_0 \leq t_1$ " also have "... $\leq t_2$ " also/finally $\rightsquigarrow t_0 \leq t_2$

Substitution:

have $"r \le f(s)"$ also have "s < t" also/finally $\rightsquigarrow (\bigwedge x. x < y \implies f(x) < f(y)) \implies r < f(t)$

Transitivity:

have " $t_0 \leq t_1$ " also have "... $\leq t_2$ " also/finally $\rightsquigarrow t_0 \leq t_2$

Substitution:

have " $r \leq f(s)$ " also have "s < t" also/finally $\rightsquigarrow (\bigwedge x. x < y \Longrightarrow f(x) < f(y)) \Longrightarrow r < f(t)$

Similar for all other combinations of =, \leq and <.

All about also

To view all combinations in Proof General: Isabelle/Isar \rightarrow Show me \rightarrow Transitivity rules

Demo: monotonicity reasoning