Isar — A language for structured proofs

Apply scripts

unreadable

Apply scripts

unreadable
hard to maintain

Apply scripts

unreadable
hard to maintain
do not scale

unreadable
hard to maintain
do not scale

Apply scripts

NoO structure!

-p.2

Apply scripts versus Isar proofs

Apply script = assembly language program

Apply scripts versus Isar proofs

Apply script = assembly language program
|sar proof = structured program with comments

-p.3

Apply scripts versus Isar proofs

Apply script = assembly language program
|sar proof = structured program with comments

But: apply still useful for proof exploration

-p.3

A typical Isar proof

proof
assume formulay
have formula; by SImp

have formula, by blast
show formula,11 by ...
ged

—p.4

A typical Isar proof

proof
assume formulay
have formula; by SIMp

have formula, by blast
show formula,11 by ...
ged

proves formulag — formula,+1

—p.4

Basic Isar
Propositional logic
Predicate logic

Overview

-p.5

|sar core syntax

proof = proof [method] statement* ged
| by method

proof

method

|sar core syntax

proof [method] statement* ged
by method

= (simp...)|(blast...) | (rule...)|...

-p.6

|sar core syntax

proof = proof [method] statement* ged
| by method

method = (simp...)|(blast...)|(rule...)]...

statement = fix variables (\)
| assume proposition (=)
|

[from name™] (have | show) proposition proof

-p.6

|sar core syntax

proof = proof [method] statement* ged
| by method

method = (simp...)|(blast...)|(rule...)]...

statement = fix variables (A)

assume Proposition (=)

[from name™] (have | show) proposition proof
next (separates subgoals)

-p.6

|sar core syntax

proof = proof [method] statement* ged
| by method

method = (simp...)|(blast...)|(rule...)]...

statement = fix variables (A)
assume Proposition (=)
[from name™] (have | show) proposition proof
next (separates subgoals)

proposition = [name:] formula

-p.6

Demo: propositional logic, introduction rules

—-p.7

Basic proof methods

Basic atomic proof:

Dy method
apply method, then prove all subgoals by assumption

-p.8

Basic proof methods

Basic atomic proof:

Dy method

apply method, then prove all subgoals by assumption
Basic proof method:

rule a
apply a rule in a;

-p.8

Basic proof methods

Basic atomic proof:

Dy method
apply method, then prove all subgoals by assumption

Basic proof method:

rule a
apply a rule in a;
If @ 1s empty: apply a standard elim or intro rule.

-p.8

Basic proof methods

Basic atomic proof:

Dy method
apply method, then prove all subgoals by assumption

Basic proof method:
rule a
apply a rule in a;
If @ 1s empty: apply a standard elim or intro rule.

Abbreviations:
= by do-nothing
= by rule

Demo: propositional logic, elimination rules

-p.9

Elimination rules / forward reasoning

Elim rules are triggered by facts fed into a proof:
from a have formula proof

-p.10

Elimination rules / forward reasoning

Elim rules are triggered by facts fed into a proof:
from a have formula proof

proof alone abbreviates proof rule

-p.10

Elimination rules / forward reasoning

Elim rules are triggered by facts fed into a proof:
from a have formula proof

proof alone abbreviates proof rule
rule: tries elim rules first (if there are incoming facts a')

-p.10

Elimination rules / forward reasoning

Elim rules are triggered by facts fed into a proof:
from a have formula proof

proof alone abbreviates proof rule
rule: tries elim rules first (if there are incoming facts a')

from @ have formula proof (rule rule)

-p.10

Elimination rules / forward reasoning

Elim rules are triggered by facts fed into a proof:
from a have formula proof

proof alone abbreviates proof rule
rule: tries elim rules first (if there are incoming facts a')

from @ have formula proof (rule rule)
a must prove the first n premises of rule,

-p.10

Elimination rules / forward reasoning

Elim rules are triggered by facts fed into a proof:
from a have formula proof

proof alone abbreviates proof rule
rule: tries elim rules first (if there are incoming facts a')

from @ have formula proof (rule rule)
a must prove the first n premises of rule, in the right order

-p.10

Elimination rules / forward reasoning

Elim rules are triggered by facts fed into a proof:
from a have formula proof

proof alone abbreviates proof rule
rule: tries elim rules first (if there are incoming facts a')

from @ have formula proof (rule rule)
a must prove the first n premises of rule, in the right order

the others are left as new subgoals

-p.10

Abbreviations

this = the previous proposition proved or assumed
then = from this
thus = then show

hence = then have

with @ = from d this

-p.11

using

First the what, then the how:

(have|show) proposition using facts

-p.12

using

First the what, then the how:

(have|show) proposition using facts

from facts (have|show) proposition

-p.12

using

First the what, then the how:

(have|show) proposition using facts

from facts (have|show) proposition

Can be mixed:

from major-facts (have|show) proposition using minor-facts

-p.12

using

First the what, then the how:

(have|show) proposition using facts

from facts (have|show) proposition

Can be mixed:

from major-facts (have|show) proposition using minor-facts

from major-facts minor-facts (have|show) proposition

-p.12

Demo: avoiding duplication

Schematic term variables

?A

-p.14

Schematic term variables

?A

Defined by pattern matching:
X=0Ay=1(is?AAN_)

Schematic term variables

?A

Defined by pattern matching:
X=0Ay=1(is?AAN_)

Predefined: ?thesis
The last enclosing show formula

-p.14

Demo: predicate calculus

- p.15

obtain

Syntax:

obtain variables where proposition proof

- p.16

from ...
have ...

apply -

apply(. ..

apply(. . .

done

Mixing proof styles

make Incoming facts assumptions

-p.17

Advanced Isar

-p.18

Overview

Case distinction
Induction
Calculational reasoning

-p.19

Case distinction

Boolean case distinction

proof Cases
assume formula

next
assume — formula

ged

-p.21

Boolean case distinction

proof cases proof (cases formula)
assume formula case Irue

next next
assume — formula case False

ged ged

-p.21

Boolean case distinction

proof cases proof (cases formula)
assume formula case Irue
next next
assume — formula case False
ged ged
case True =

assume True: formula

-p.21

Demo: case distinction

- p.22

Datatype case distinction

proof (cases term)
case Constructor

next

next
case (Constructor,,)

ged

-p.23

Datatype case distinction

proof (cases term)
case Constructor

next

next
case (Constructor,,)

ged
case (Constructor;) =

fix ¥ assume Constructor ;. term = (Constructor; ¥)

-p.23

Induction

-p.24

Overview

Structural induction
Rule induction
Induction with recdef

-p.25

Structural induction for type nat

show P(n)
proof (Induction n)
case 0

show ?case
next
case (Suc n)

. n ...
show ?7case
ged

- p.26

Structural induction for type nat

show P(n)
proof (Induction n)
case 0

show ?case
next
case (Suc n)

. n ...
show ?7case
ged

let 7case = P(0)

- p.26

Structural induction for type nat

show P(n)
proof (Induction n)
case 0

let 7case = P(0)

show ?case
next
case (Suc n)

fix N assume Suc: P(Nn)
let 7case = P(Suc n)
- N ---
show ?7case
ged

- p.26

Demo: structural induction

- p.27

Structural induction with = and A\

show AX. A(n) = P(n)
proof (Induction n)
case 0

show ?case
next
case (Suc n)

show ?case
ged

-p.28

Structural induction with = and

show AX. A(n) = P(n)
proof (Induction n)
case 0

show ?case
next
case (Suc n)

show ?case
ged

fix X assume 0: A(0)
let ?case = P(0)

-p.28

Structural induction with = and

show AX. A(n) = P(n)
proof (Induction n)

case O = fix X assume 0: A(O)
. let ?case = P(0)
show ?case
next
case (Suc n) = fix N X
. assume Suc: Ax. A(n) = P(n)
.n--. A(Suc n)

. let ?case = P(Suc n)
show ?case
ged

-p.28

A remark on style

case (Suc n) ...show ?case
IS easy to write and maintain

-p.29

A remark on style

case (Suc n) ...show ?case
IS easy to write and maintain

fix N assume formula ...show formulad’
IS easler to read:

all information is shown locally
no contextual references (e.g. ?case)

-p.29

Demo: structural induction with =—- and A

-p.30

Rule induction

-p.31

Inductive definition

inductive S
INntros
rule;: [se S;A]=5s' €S

rule,: ...

- p.32

Rule induction

show X € S = P(X)
proof (Induct rule: S.induct)
case rule

show ?7case
next

next
case rule,,

show ?7case
ged

-p.33

Implicit selection of induction rule

assume A: X € S

show P(X)
using A proof Induct

ged

-p.34

Implicit selection of induction rule

assume A: X € S lemma assumes A: X € S shows P(X)
using A proof Induct

show P(X)
using A proof Induct ged

ged

-p.34

Renaming free variables in rule

case (I’UIGZ' X1 ... Xk)

Renames the (alphabetically!) first k& variables in rule; to

X1 ... XE.

-p.35

Demo: rule induction

- p.36

Induction with recdef

Definition:
recdef f

- p.37

Induction with recdef

Definition:
recdef f

Proof:
show ... f(...) ...
proof (Induction Xy ... X; rule: f.induct)

- p.37

Induction with recdef

Definition:
recdef f

Proof:
show ... f(...) ...
proof (Induction Xy ... X; rule: f.induct)

case 1

- p.37

Induction with recdef

Definition:
recdef f

Proof:
show ... f(...) ...
proof (Induction Xy ... X; rule: f.induct)

case 1

Case i refers to equation i in the definition of f

- p.37

Induction with recdef

Definition:
recdef f

Proof:
show ... f(...) ...
proof (Induction Xy ... X; rule: f.induct)

case 1

Case i refers to equation i in the definition of f
More precisely: to equation i in f.simps

- p.37

Demo: iInduction with recdef

Calculational Reasoning

-p.39

Overview

Accumulating facts
Chains of equations and inequations

- p.40

have formulay ...
moreover
have formulas ...
moreover

moreover

have formula,, ...
ultimately show . ..

— pipes facts formulaq
proof

moreover

... formula, INto the proof

-p.4l

have "tg = t1"
also
have "...= 5"
also

also

have "...=t,"

also

- p.42

have "tg = t1"
also

have "...= 5"
also

also

have "...=t,"

also

- p.42

have "tg = t1"
also

have "...= 5"
also

also
have "...=t,"

also

I
Ny
—_

- p.42

also

have "tg = t1"

also

have "...= t9" =11
also

also

have "...= ¢, U

finally show
— pipes fact ¢ty = t,, Into the proof
proof

- p.42

“..."1s merely an abbreviation

- p.43

Demo: moreover and also

- p.44

Variations on also

Transitivity:

have "tg = t1"

also have "... = t9"
alsof/finally ~»

—p.45

Variations on also

Transitivity:

have "tg = t1"

also have "... = t9"
alsoffinally ~» to = t9

—p.45

Variations on also

Transitivity:

have "tg = t1"

also have "... = t9"
alsoffinally ~» to = t9

Substitution:

have " P(s)"
also have "s = ¢"
alsof/finally ~»

—p.45

Variations on also

Transitivity:

have "tg = t1"

also have "... = t9"
alsoffinally ~» to = t9

Substitution:

have " P(s)"
also have "s = t"
also/finally ~ P(t)

—p.45

From =to < and <

Transitivity:

have "tg < t1"
also have "... < t9"
alsof/finally ~»

— p.46

From =to < and <

Transitivity:

have "tg < t1"
also have "... < t9"
alsoffinally ~ tg < to

— p.46

Transitivity:

have "tg < t1"
also have "... < t9"
alsoffinally ~ tg < to

Substitution:

From =to < and <

have "r < f(s)"

also have "s < t"
alsof/finally ~»

— p.46

From =to < and <

Transitivity:

have "t() < t1" C e e
also have "... <t
alsoffinally ~ tg < to

Substitution:

have "r < f(s)"
also have "s < t"
alsoffinally ~ (AX. X<y = f(X) < f(Yy)) = r < f(t)

— p.46

From =to < and <

Transitivity:

have "t() < t1" C e e
also have "... <t
alsoffinally ~ tg < to

Substitution:

have "r < f(s)"
also have "s < t"
alsoffinally ~ (AX. X<y = f(X) < f(Yy)) = r < f(t)

Similar for all other combinations of =, < and <.

— p.46

All about also

To view all combinations in Proof General:
Isabelle/lsar — Show me — Transitivity rules

- p.47

Demo: monotonicity reasoning

—p.48

		extcolor {darkblue}{Apply scripts}
		extcolor {darkblue}{Apply scripts versus Isar proofs}
		extcolor {darkblue}{A typical Isar proof}
		extcolor {darkblue}{Overview}
		extcolor {darkblue}{Isar core syntax}
		extcolor {darkblue}{Basic proof methods}
		extcolor {darkblue}{Elimination rules / forward reasoning}
		extcolor {darkblue}{Abbreviations}
		extcolor {darkblue}{using}
		extcolor {darkblue}{Schematic term variables}
		extcolor {darkblue}{obtain}
		extcolor {darkblue}{Mixing proof styles}
		extcolor {darkblue}{Overview}
		extcolor {darkblue}{Boolean case distinction}
		extcolor {darkblue}{Datatype case distinction}
		extcolor {darkblue}{Overview}
		extcolor {darkblue}{Structural induction for type nat}
		extcolor {darkblue}{Structural induction with isa {{isasymLongrightarrow }} and isa {{isasymAnd }}}
		extcolor {darkblue}{A remark on style}
		extcolor {darkblue}{Inductive definition}
		extcolor {darkblue}{Rule induction}
		extcolor {darkblue}{Implicit selection of induction rule}
		extcolor {darkblue}{Renaming free variables in rule}
		extcolor {darkblue}{Induction with recdef}
		extcolor {darkblue}{Overview}
		extcolor {darkblue}{moreover}
		extcolor {darkblue}{also}
		extcolor {darkblue}{dots }
		extcolor {darkblue}{Variations on also}
		extcolor {darkblue}{From $=$ to $le $ and $<$}
		extcolor {darkblue}{All about also}

