
Isar — A language for structured proofs
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Apply scripts

• unreadable

• hard to maintain
• do not scale

No structure!
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Apply scripts versus Isar proofs

Apply script = assembly language program

Isar proof = structured program with comments

But: apply still useful for proof exploration
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A typical Isar proof

proof

assume formula0

have formula1 by simp
...
have formulan by blast
show formulan+1 by . . .

qed

proves formula0 =⇒ formulan+1
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Overview

• Basic Isar
• Propositional logic
• Predicate logic

– p.5



Isar core syntax

proof = proof [method] statement∗ qed

| by method

method = (simp . . . ) | (blast . . . ) | (rule . . . ) | . . .

statement = fix variables (
∧

)
| assume proposition (=⇒)
| [from name+] (have | show) proposition proof
| next (separates subgoals)

proposition = [name:] formula
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Demo: propositional logic, introduction rules
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Basic proof methods

Basic atomic proof:

by method

apply method, then prove all subgoals by assumption

Basic proof method:

rule ~a

apply a rule in ~a;
if ~a is empty: apply a standard elim or intro rule.

Abbreviations:
. = by do-nothing

.. = by rule
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Demo: propositional logic, elimination rules
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Elimination rules / forward reasoning

• Elim rules are triggered by facts fed into a proof:
from ~a have formula proof

• proof alone abbreviates proof rule
• rule: tries elim rules first (if there are incoming facts ~a!)
• from ~a have formula proof (rule rule)

~a must prove the first n premises of rule, in the right order
the others are left as new subgoals
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Abbreviations

this = the previous proposition proved or assumed
then = from this
thus = then show

hence = then have

with ~a = from ~a this
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using

First the what, then the how:

(have|show) proposition using facts

=
from facts (have|show) proposition

Can be mixed:

from major-facts (have|show) proposition using minor-facts
=

from major-facts minor-facts (have|show) proposition
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Demo: avoiding duplication
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Schematic term variables

?A

• Defined by pattern matching:

x = 0 ∧ y = 1 (is ?A ∧ _)

• Predefined: ?thesis
The last enclosing show formula
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Demo: predicate calculus
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obtain

Syntax:

obtain variables where proposition proof
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Mixing proof styles

from . . .
have . . .

apply - make incoming facts assumptions
apply( . . . )
...
apply( . . . )
done
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Advanced Isar

– p.18



Overview

• Case distinction
• Induction
• Calculational reasoning
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Case distinction
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Boolean case distinction

proof cases
assume formula
...

next

assume ¬formula
...

qed

proof (cases formula)
case True
...

next

case False
...

qed

case True ≡

assume True: formula

– p.21
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Demo: case distinction
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Datatype case distinction

proof (cases term)
case Constructor 1

...
next
...
next

case (Constructor k ~x)
· · · ~x · · ·

qed

case (Constructor i ~x) ≡

fix ~x assume Constructor i: term = (Constructor i ~x)
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Induction
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Overview

• Structural induction
• Rule induction
• Induction with recdef
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Structural induction for type nat

show P (n)

proof (induction n)
case 0

≡ let ?case = P (0)

. . .
show ?case

next

case (Suc n)

≡ fix n assume Suc: P (n)

. . .

let ?case = P (Suc n)

· · · n · · ·

show ?case
qed
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Demo: structural induction
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Structural induction with =⇒ and
∧

show
∧

x. A(n) =⇒ P(n)
proof (induction n)

case 0

≡ fix x assume 0: A(0)

. . .

let ?case = P(0)

show ?case
next

case (Suc n)

≡ fix n x

. . .

assume Suc:
∧

x. A(n) =⇒ P(n)

· · · n · · ·

A(Suc n)

. . .

let ?case = P(Suc n)

show ?case
qed – p.28
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Structural induction with =⇒ and
∧

show
∧

x. A(n) =⇒ P(n)
proof (induction n)
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A remark on style

• case (Suc n) . . . show ?case
is easy to write and maintain

• fix n assume formula . . . show formula′

is easier to read:
• all information is shown locally
• no contextual references (e.g. ?case)
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Demo: structural induction with =⇒ and
∧
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Rule induction
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Inductive definition

inductive S
intros

rule1: [[ s ∈ S; A ]] =⇒ s’ ∈ S
...
rulen: . . .
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Rule induction

show x ∈ S =⇒ P(x)
proof (induct rule: S.induct)

case rule1

. . .
show ?case

next
...
next

case rulen

. . .
show ?case

qed
– p.33



Implicit selection of induction rule

assume A: x ∈ S
...
show P(x)
using A proof induct
...
qed

lemma assumes A: x ∈ S shows P(x)
using A proof induct
...
qed
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Renaming free variables in rule

case (rulei x1 . . . xk)

Renames the (alphabetically!) first k variables in rulei to

x1 . . . xk.
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Demo: rule induction
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Induction with recdef

Definition:
recdef f
...

Proof:
show . . . f( . . . ) . . .

proof (induction x1 . . . xk rule: f.induct)

case 1
...

Case i refers to equation i in the definition of f
More precisely: to equation i in f.simps
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Demo: induction with recdef
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Calculational Reasoning
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Overview

• Accumulating facts
• Chains of equations and inequations
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moreover

have formula1 . . .
moreover

have formula2 . . .
moreover
...
moreover

have formulan . . .
ultimately show . . .
— pipes facts formula1 . . . formulan into the proof
proof
...
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also

have "t0 = t1" . . . .
also

have " . . . = t2" . . . .

. . . ≡ t1

also
...
also

have " . . . = tn" . . . .

. . . ≡ tn−1

finally show . . . .
— pipes fact t0 = tn into the proof
proof
...
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. . .

“. . . ” is merely an abbreviation
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Demo: moreover and also
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Variations on also

Transitivity:

have "t0 = t1" . . . .
also have " . . . = t2" . . . .
also/finally ;

t0 = t2

Substitution:

have "P (s)" . . . .
also have "s = t" . . . .
also/finally ; P (t)
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From = to ≤ and <

Transitivity:

have "t0 ≤ t1" . . . .
also have " . . . ≤ t2" . . . .
also/finally ;

t0 ≤ t2

Substitution:

have "r ≤ f(s)" . . . .
also have "s < t" . . . .
also/finally ; (

∧
x. x < y =⇒ f(x) < f(y)) =⇒ r < f(t)

Similar for all other combinations of =, ≤ and <.
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All about also

To view all combinations in Proof General:

Isabelle/Isar → Show me → Transitivity rules
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Demo: monotonicity reasoning
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