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Set notation
Inductively defined sets
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Type 'a set: sets over type 'a
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Type 'a set: sets over type 'a
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Proofs about sets

Natural deduction proofs:
equalityl:[ACB;BCAl— A=B
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Proofs about sets

Natural deduction proofs:
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Proofs about sets

Natural deduction proofs:
equalityl:[ACB;BCAl— A=B
subsetl: (AX. X e A=xeB)—ACB

(see Tutorial)
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Demo: proofs about sets
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VXeA. P X

Bounded gquantifiers
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Bounded gquantifiers

VXeEA.PX = VX.XeA—PX
IXcA.PX = IX.XeAAPX
ball1:(AX. X e A= P X) = VxeA. P x
bspec: [VXeA.P x;x €e Al = P X
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Bounded gquantifiers

VXeA.PX = VX.XeA —PX
IXceA.PXx = 3IX. XecA AP X
pal 1 : (AX. X e A= P X) = VYxeA. P x

pspec: [VXeA.PX;x e Al = P X
nex!| : [P x; X € Al = IxeA. P X
pexE: [AXeA.PX; AX. [X e A;PX] = Q] = Q
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Inductively defined sets



Informally:

Example: finite sets
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Example: finite sets

Informally:
The empty set is finite
Adding an element to a finite set yields a finite set
These are the only finite sets

In Isabelle/HOL:

consts FIn :: ’a set set — The set of all finite set
inductive FIn
Intros

{} € Fin

A € FIn = Inserta A € Fin
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Example: even numbers

Informally:
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Informally:
O Is even
If n IS even, SO IS n + 2
These are the only even numbers

In Isabelle/HOL:

consts EV :: nat set — The set of all even numbers
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Example: even numbers

Informally:
O Is even
If n IS even, SO IS n + 2
These are the only even numbers

In Isabelle/HOL:

consts EV :: nat set — The set of all even numbers
inductive EV
Intros

O cEv

nekv—=n+2ckv
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Format of inductive definitions

consts S ;. 7 set
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Format of inductive definitions

consts S i T set
inductive S
INtros
a1 €S; ... ;a,€S;A;...; AL ] =ae$S
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Format of inductive definitions

consts S i T set
inductive S
INtros
a1 €S; ... ;a,€S;A;...; AL ] =ae$S

where A¢; ...; A, are side conditions not involving S.
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Proving properties of even numbers

Easy: 4 € Ev
Ockv=—=2ckv=4ckv
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Trickier: m € Ev — m+m <€ Ev

ldea: induction on the length of the derivation of m € Ev
Better: induction on the structure of the derivation

Two cases: m € Ev Is proved by
rule 0 € Ev
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Proving properties of even numbers

Easy: 4 € Ev
Ockv=—=2ckv=4ckv

Trickier: m € Ev — m+m <€ Ev

ldea: induction on the length of the derivation of m € Ev
Better: induction on the structure of the derivation

Two cases: m € Ev Is proved by

rule O € Bv
— M=0—=—0+0 € kv

rulene Ev — n+2 € Ev
— m = n+2 and n+n € Ev (ind. hyp.!)
— m+m = (n+2)+(n+2) = ((n+n)+2)+2 € Ev
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Rule induction for Ev

To prove
neEv—=—Pn
by rule induction on n € Ev we must prove
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Rule induction for Ev

To prove

neEv—=—Pn
by rule induction on n € Ev we must prove
PO
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Rule induction for Ev

To prove

neEv—=—Pn
by rule induction on n € Ev we must prove
PO

Pn— P(nt+2)

Rule Ev. | nduct :

[n€EV;PO; An.Pn=>P(n+2) | = Pn

An elimination rule



Rule induction in general

Set S Is defined inductively.
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Set S Is defined inductively.
To prove

XeS=PX
by rule induction on X € S
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Rule induction in general

Set S Is defined inductively.
To prove

X eSS =—PX

by rule induction on X € S
we must prove for every rule

a1 €S;...;a,€eS]|=aeS
that P Is preserved.:
|IPa;;...;Pa,|]=Pa

In Isabelle/HOL:
apply(erule S.induct)
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Demo: inductively defined sets
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