HOL: Propositional Logic



Overview

Natural deduction
Rule application in Isabelle/HOL
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Rule notation

Instead of [A1 ..

Ap] = A

-p.3



Natural Deduction



Natural deduction

Two kinds of rules for each logical operator &:
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Natural deduction

Two kinds of rules for each logical operator &:
Introduction: how can | prove A ® B?
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Natural deduction

Two kinds of rules for each logical operator &:
Introduction: how can | prove A ® B?
Elimination: what can | prove from A ® B?
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Natural deduction for propositional logic

A/\BCOnjl

AvB AvB

A g "

disjll/2

| ffl

A=B

- A

not |

ANB c conj E
AvB = di sj E
A-—B - | ME
A___>|3iffD1 B—_—>AiffD2
~A not E
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Natural deduction for propositional logic
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AANB
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A not |
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Natural deduction for propositional logic

A B
AANB

A B
AvB AvB

A—B.
A_p' "

A—B B:Aiffl
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Natural deduction for propositional logic
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Operational reading

Ar.. A,
A
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Operational reading

Ar.. A,
A

Introduction rule:
To prove A it suffices to prove A, ... A,.
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Operational reading

Ar.. A,
A

Introduction rule:
To prove A it suffices to prove A, ... A,.

Elimination rule
If | know A; and want to prove A
It suffices to prove A, ... A,.
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Equality
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Equality
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Equality

s=t r=s s=t
sym
=g refl =g Y —¢ trans
s=t A(S)
A subst

Rarely needed explicitly — used implicitly by simp
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More rules

A—B A
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- A — False

A

More rules

A—B A

np

-A=—A
A

ccontr

cl assi cal

-p.9



More rules

A—B A
B n
ﬂA:;\ False ..ontr ﬁAA:> A ¢| assi cal

Remark:

ccontr and cl assi cal are not derivable from the
ND-rules.
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More rules

A—B A

B n
ﬂA:;\ False ..ontr ﬁAA:> A ¢| assi cal

Remark:

ccontr and cl assi cal are not derivable from the
ND-rules.
They make the logic “classical”, i.e. “non-constructive”.
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Proof by assumption

Al

- A assunpti on
A;
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Rule application: the rough idea

Applying rule [ A;; ... ; A, | = Ato subgoal C:
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Rule application: the rough idea

Applying rule [ A;; ... ; A, | = Ato subgoal C:
Unify A and C
Replace C with n new subgoals A; ... A,
Working backwards, like in Prolog!

Example: rule: [?P; ?Q] = ?P A ?Q
subgoal: 1. AAB
Result: 1. A
2.B



Rule application: the detalils

A

Rule: [[Al, .o ,An]]
B C

. —
Subgoal: 1.[By; ... ;B ] =



Rule application: the detalils
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Rule application: the detalils

Rule: [A;; ... ;AL ] = A

Subgoal: 1.[By; ... ;B ]=2C

Substitution: a(A) = o(C)
New subgoals:  1.0([Bi;... ;B ] = Ay)

.n. o([B1;... ;Bn] = A))



Rule application: the detalils

Rule: [A;; ... ;AL ] = A
Subgoal: 1.[By; ... ;B ]=2C
Substitution: a(A) = o(C)
New subgoals:  1.0([Bi;... ;B ] = Ay)
N.o([By1;... ;B ] = Ay)
Command:

apply(rule <rulename>)



Proof by assumption

apply assumption
proves

1.|By;... ;B |=C

by unifying C with one of the B;



Proof by assumption

apply assumption
proves

1.|By;... ;B |=C

by unifying C with one of the B; (backtracking!)



Demo: application of introduction rule



Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
unifies first premise of rule with an assumption
eliminates that assumption
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Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
unifies first premise of rule with an assumption
eliminates that assumption

Example:
Rule: [?P A ?Q; [?P; ?Q] = ?R] = 7R
Subgoal: 1.[X;AAB)Y ]| =<2
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Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
unifies first premise of rule with an assumption
eliminates that assumption

Example:
Rule: [?P A ?Q; [?P; ?Q] = ?R] = 7R
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Unification: ?P A?Q=AABand?R =7
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Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
unifies first premise of rule with an assumption
eliminates that assumption

Example:

Rule: [?P A ?Q; [?P; ?Q] = ?R] = 7R
Subgoal: 1.[X;AAB)Y ]| =<2
Unification: ?P A?Q=AABand?R =7
New subgoal: 1.[X;Y | =[A;B]=Z
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Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
unifies first premise of rule with an assumption

eliminates that assumption

Example:
Rule: [?P A ?Q; [?P; ?Q] = ?R] = 7R
Subgoal: 1.[X;AAB)Y ]| =<2
Unification: ?P A?Q=AABand?R =7
New subgoal: 1.[X;Y | =[A;B]=Z
sameas: L [X;Y,;A;B]=Z
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How to prove it by natural deduction

Intro rules decompose formulae to the right of —-.
apply(rule <intro-rule>)
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How to prove it by natural deduction

Intro rules decompose formulae to the right of —-.
apply(rule <intro-rule>)

Elim rules decompose formulae on the left of —.
apply(erule <elim-rule>)
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Demo: examples
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Safe and unsafe rules

Safe rules preserve provability
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Safe and unsafe rules

Safe rules preserve provability
conjl, 1tnpl, notl, 1ffl, refl, ccontr,
classical, conjE, disjE

-p.18



Safe and unsafe rules

Safe rules preserve provability
conjl, 1tnpl, notl, 1ffl, refl, ccontr,
classical, conjE, disjE

Unsafe rules can turn a provable goal into an unprovable one
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Safe and unsafe rules

Safe rules preserve provability
conjl, 1tnpl, notl, 1ffl, refl, ccontr,
classical, conjE, disjE

Unsafe rules can turn a provable goal into an unprovable one
disjll, disjl2, inpE, iffDl, iffD2, notE
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Safe and unsafe rules

Safe rules preserve provability
conjl, 1tnpl, notl, 1ffl, refl, ccontr,
classical, conjE, disjE

Unsafe rules can turn a provable goal into an unprovable one
disjll, disjl2, inpE, iffDl, iffD2, notE

Apply safe rules before unsafe ones
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—> VS —

Write theorems as [Aq; ...; Al = A
notas A; A ... A A, — A (to ease application)
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Write theorems as [Aq; ...; Al = A
notas A; A ... A A, — A (to ease application)

Exception (in apply-style): induction variable must not
occur in the premises.
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—> VS —

Write theorems as [Aq; ...; Al = A
notas A; A ... A A, — A (to ease application)

Exception (in apply-style): induction variable must not
occur in the premises.

Example: [A; B(X) | = C(X) ~ A= B(x) — C(x)
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—> VS —

Write theorems as [Aq; ...; Al = A
notas A; A ... A A, — A (to ease application)

Exception (in apply-style): induction variable must not
occur in the premises.

Example: [A; B(X) | = C(X) ~ A= B(x) — C(x)

Reverse transformation (after proof):
lemma abc[rule format]: A — B(X) — C(X)
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Demo: further techniques



HOL: Predicate Logic



Parameters

Subgoal:
1. AX1 ... X,. FOormula

The x; are called parameters of the subgoal.
Intuition: local constants, i.e. arbitrary but fixed values.
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Parameters

Subgoal:

1. AX1 ... X,. FOormula

The x; are called parameters of the subgoal.
Intuition: local constants, i.e. arbitrary but fixed values.

Rules are automatically lifted over Ax; ... X,, and applied
directly to Formula.
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Scope

Scope of parameters: whole subgoal
Scope of vV, 3, ...: ends with ; or =



Scope

Scope of parameters: whole subgoal
Scope of vV, 3, ...: ends with ; or =

AXY. [VY.PYy —Qzy, QXxy]= IX. QXY
means

AXY. [(VY1.PyT — Qzyq); OXy]= 3IX1.QX 1Yy



a-Conversion

VX. P(x): X can appear in P(x).
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Example: VX. X = X Is obtained by P — Au. u=u
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a-Conversion

VX. P(x): X can appear in P(x).

Example: VX. X = X Is obtained by P — Au. u=u
VX. P: X cannot appear in P.

Example: P — x=xyields VXx. x = X

Bound variables are renamed automatically to avoid name
clashes with other variables.
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Natural deduction for quantifiers

vV X. P(X)
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Natural deduction for quantifiers

AX. P(X) vVX. P(xX) P(?X) =R

7x. P(X) al | | R al | E
P(?X) Ix. P(X) AXx.P(X) = R

IX. P(X) ex] R exE

al I I and exE introduce new parameters (/A\X).
al | Eand ex! introduce new unknowns (?x).



Instantiating rules

apply(rule_tac x = "term" In rule)

Like rule, but ?x In rule IS instantiated by term before
application.
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Instantiating rules

apply(rule_tac x = "term" In rule)

Like rule, but ?x In rule IS instantiated by term before
application.

Similar: erule_tac
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Instantiating rules

apply(rule_tac x = "term" In rule)

Like rule, but ?x In rule IS instantiated by term before
application.

Similar: erule_tac

| xisin rule, not in the goal '
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Two successful proofs

1. VX. dy. Xx=y
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apply(rule alll)
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best practice
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Two successful proofs

1. VX. dy. Xx=y
apply(rule alll)
1. AX. dy. xX=y
best practice
apply(rule_tac x = "x" in exl)
1. AX. X=X
apply(rule refl)
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Two successful proofs

1. VX. dy. Xx=y
apply(rule alll)
1. AX. dy. xX=y
best practice exploration
apply(rule_tac x = "x" in exl) apply(rule exl)

1. AX. X=X
apply(rule refl)
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1. VX. dy. Xx=y
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apply(rule refl)
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Two successful proofs

1. VX. dy. Xx=y
apply(rule alll)
1. AX. dy. xX=y
best practice exploration
apply(rule_tac x = "x" in exl) apply(rule exl)
1. AX. X=X 1. AX. X =72y X
apply(rule refl) apply(rule refl)
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Two successful proofs

1. VX. dy. Xx=y
apply(rule alll)
1. AX. dy. xX=y
best practice
apply(rule_tac x = "x" in exl)
1. AX. X=X

apply(rule refl)

exploration
apply(rule exl)
1. AX. X =72y X
apply(rule refl)
?y — AU. U
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Two successful proofs

1. VX. dy. Xx=y

apply(rule alll)

1. AX. dy. xX=y
best practice exploration
apply(rule_tac x = "x" in exl) apply(rule exl)
1. AX. X=X 1. AX. X =72y X
apply(rule refl) apply(rule refl)

?y — AU. U

simpler & clearer shorter & trickier
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Two unsuccessful proofs

1. dy. VX. X =Yy
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Two unsuccessful proofs

1. dy. VX. X =Yy
apply(rule_tac x = ??7? in exl) apply(rule exl)
1.VX. X=7y

apply(rule alll)
1. AX. X =7y
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Two unsuccessful proofs

1. dy. VX. X =Yy
apply(rule_tac x = ??7? in exl) apply(rule exl)
1.VX. X=7y
apply(rule alll)
1. AX. X =7y

apply(rule refl)
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Two unsuccessful proofs

1. dy. VX. X =Yy
apply(rule_tac x = ??7? in exl) apply(rule exl)
1.VX. X=7y
apply(rule alll)
1. AX. X =7y

apply(rule refl)
?y — X ylelds AX’. X’ =X
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Two unsuccessful proofs

1. dy. VX. X =Yy
apply(rule_tac x = ??7? in exl) apply(rule exl)
1.VX. X=7y
apply(rule alll)
1. AX. X =7y

apply(rule refl)
?y — X ylelds AX’. X’ =X

Principle:

?f X1 ... X, can only be replaced by term ¢
If params(t) C {X1, ..., Xn}
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Demo: quantifier proofs



Safe and unsafe rules

Safe al | |, exE
Unsafe al | E, exl
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Safe and unsafe rules

Safe al | |, exE
Unsafe al | E, exl

Create parameters first, unknowns later
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Proof methods



Parameter names

Parameter names are chosen by Isabelle
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Parameter names

Parameter names are chosen by Isabelle

1. VX. dy. Xx=y
apply(rule alll)
1. AX. dy. X =y

apply(rule_tac x ="x" in exl)
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Parameter names

Parameter names are chosen by Isabelle

1. VX. dy. Xx=y
apply(rule alll)
1. AX. dy. X =y

apply(rule_tac x ="x" in exl)

Brittle!
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Renaming parameters

1. VX. dy. X =y
apply(rule alll)
1. AX. dy. xX=y

apply(rename_tac Xxxx)
1. AXXX. Y. XXX =y

apply(rule_tac x = "xxx" in exl)
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Renaming parameters

1. VX. dy. X =y
apply(rule alll)
1. AX. dy. xX=y

apply(rename_tac Xxxx)
1. AXXX. Y. XXX =y

apply(rule_tac x = "xxx" in exl)

In general:

(rename_tac x; ... X,) renames the rightmost
(inner) n parameters to x; ... X,
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Forward proofs: frule and drule

“Forward” rule: A; — A
Subgoal: 1.[By; ... ;B ] =C
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“Forward” rule: A; — A
Subgoal: 1.[By; ... ;B ] =C
Substitution: a(B;) = o(A;)
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Forward proofs: frule and drule

“Forward” rule: A; — A

Subgoal: 1.[By; ... ;B ] =C
Substitution: a(B;) = o(A;)

New subgoal: 1.0([By;... ;B A] = C)
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Forward proofs: frule and drule

“Forward” rule: A; — A

Subgoal: 1.[By;... ;B ] =C

Substitution: a(B;) = o(A;)

New subgoal: 1.0([By;... ;B A] = C)
Command:

apply(frule rulename)
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Forward proofs: frule and drule

“Forward” rule: A; — A

Subgoal: 1.[By;... ;B ] =C

Substitution: a(B;) = o(A;)

New subgoal: 1.0([By;... ;B A] = C)
Command:

apply(frule rulename)

Like frule but also deletes B;:
apply(drule rulename)
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frule and drule: the general case

Rule: A, ... ;AL ] = A
Creates additional subgoals:

.m-l. o([B1;... B, ] = An)
m.o([By;... ;B,; A] = C)
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Forward proofs: OF

NOFrq, ... r1,]

Prove assumption 1 of theorem r with theorem r,
and assumption 2 with theoremr,, and ...
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Forward proofs: OF

NOFrq, ... r1,]

Prove assumption 1 of theorem r with theorem r,
and assumption 2 with theoremr,, and ...

Ruler [A; ... AL ] = A
Rule rq [Bi;...;B,] =B
Substitution  ¢(B) = o(Aq)

[OF r4]
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Forward proofs: OF

NOFrq, ... r1,]

Prove assumption 1 of theorem r with theorem r,
and assumption 2 with theoremr,, and ...

Ruler [A; ... AL ] = A
Rule ry |By; ... ;B =B
Substitution  ¢(B) = o(Aq)

[OF r4] o([B1;...; B Ag; ... A ] = A)

- p.36



Forward proofs: THEN

r{[THENr;] means ry[OF rq]



Clarifying the goal



Clarifying the goal

apply(intro ...)
Repeated application of intro rules

Example: apply(intro alll)
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Clarifying the goal

apply(intro ...)
Repeated application of intro rules

Example: apply(intro alll)

apply(elim ...)
Repeated application of elim rules
Example: apply(elim conjE)
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Clarifying the goal

apply(intro ...)
Repeated application of intro rules

Example: apply(intro alll)

apply(elim ...)
Repeated application of elim rules
Example: apply(elim conjE)

apply(clarify)
Repeated application of safe rules
without splitting the goal
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Clarifying the goal

apply(intro ...)
Repeated application of intro rules

Example: apply(intro alll)

apply(elim ...)
Repeated application of elim rules

Example: apply(elim conjE)

apply(clarify)
Repeated application of safe rules

without splitting the goal

apply(clarsimp simp add: ...)
Combination of clarify and simp.
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Demo: proof methods



		extcolor {darkblue}{Overview}
		extcolor {darkblue}{Rule notation}
		extcolor {darkblue}{Natural deduction}
		extcolor {darkblue}{Natural deduction for propositional logic}
		extcolor {darkblue}{Operational reading}
		extcolor {darkblue}{Equality}
		extcolor {darkblue}{More rules}
		extcolor {darkblue}{Proof by assumption}
		extcolor {darkblue}{Rule application: the rough idea}
		extcolor {darkblue}{Rule application: the details}
		extcolor {darkblue}{Proof by assumption}
		extcolor {darkblue}{Applying elimination rules}
		extcolor {darkblue}{How to prove it by natural deduction}
		extcolor {darkblue}{Safe and unsafe rules}
		extcolor {darkblue}{isa {{isasymLongrightarrow }} vs isa {{isasymlongrightarrow }}}
		extcolor {darkblue}{Parameters}
		extcolor {darkblue}{Scope}
		extcolor {darkblue}{$alpha $-Conversion}
		extcolor {darkblue}{Natural deduction for quantifiers}
		extcolor {darkblue}{Instantiating rules}
		extcolor {darkblue}{Two successful proofs}
		extcolor {darkblue}{Two unsuccessful proofs}
		extcolor {darkblue}{Safe and unsafe rules}
		extcolor {darkblue}{Parameter names}
		extcolor {darkblue}{Renaming parameters}
		extcolor {darkblue}{Forward proofs: frule and drule}
		extcolor {darkblue}{frule and drule: the general case}
		extcolor {darkblue}{Forward proofs: OF}
		extcolor {darkblue}{Forward proofs: THEN}
		extcolor {darkblue}{Clarifying the goal}

