HOL: Propositional Logic

Overview

Natural deduction
Rule application in Isabelle/HOL

-p.2

Rule notation

Instead of [A1 ..

Ap] = A

-p.3

Natural Deduction

Natural deduction

Two kinds of rules for each logical operator &:

-p.5

Natural deduction

Two kinds of rules for each logical operator &:
Introduction: how can | prove A ® B?

-p.5

Natural deduction

Two kinds of rules for each logical operator &:
Introduction: how can | prove A ® B?
Elimination: what can | prove from A ® B?

-p.5

Natural deduction for propositional logic

A/\BCOnjl

AvB AvB

A g "

disjll/2

| ffl

A=B

- A

not |

ANB c conj E
AvB = di sj E
A-—B - | ME
A___>|3iffD1 B—_—>AiffD2
~A not E

-p.6

Natural deduction for propositional logic

A B
AANB

conj |

A\/BAdeISjll/Z

A g "

| ffl

A=B

not |

- A

ANB c conj E
AvB = di sj E
A-—B - | ME
A___>|3iffD1 B—_—>AiffD2
~A not E

-p.6

Natural deduction for propositional logic

A B
AANB

A B
AvB AvB

conj |

disjll/2

A g "

| ffl

A=B

not |

- A

ANB c conj E
AvB = di sj E
A-—B - | ME
A___>|3iffD1 B—_—>AiffD2
~A not E

-p.6

Natural deduction for propositional logic

A B
AANB

A B
AvB AvB

A—B.
A_p' "

conj |

disjll/2

| ffl

A=B

not |

- A

ANB c conj E
AvB = di sj E
A-—B - | ME
A___>|3iffD1 B—_—>AiffD2
~A not E

-p.6

Natural deduction for propositional logic

A B
AANB

A B
AvB AvB

A—B.
A_p' "

A—B B:Aiffl
A=B

conj |

disjll/2

not |

- A

ANB c conj E
AvB = di sj E
A-—B - | ME
A___>|3iffD1 B—_—>AiffD2
ﬂAC not E

-p.6

Natural deduction for propositional logic

A B
AANB

A B
AvB AvB

A—B.
A_p' "

A—B B:Aiffl
A=B

conj |

disjll/2

A — False

A not |

ANB c conj E
AvB = di sj E
A-—B - | ME
A___>|3iffD1 B—_—>AiffD2
~A not E

-p.6

Natural deduction for propositional logic

A B
AANB

A B
AvB AvB

A—B.
A_p' "

A—B B:Aiffl
A=B

conj |

disjll/2

A — False

A not |

AAB [AB] = C

C

conj E

AV B

disj E

c | npE

| ff D1 | ffD2

A— B B— A
- A

not &

-p.6

Natural deduction for propositional logic

A B
AANB

conj |

A B ..
A\/BAdeISjll/Z

A—B.
A_p' "

A—B B:Aiffl
A=B

A — False

A not |

AAB [AB] = C

c conj E
AvB A=C B—_—>CdiSjE
C
A— B :
. | MPE
A:>B'ffD1 B—_—>A'ffD2
- A not E

-p.6

Natural deduction for propositional logic

A B
AANB

conj |

A B ..
A\/BAdeISjll/Z

A—B.
A_p' "

A—B B:Aiffl
A=B

A — False

A not |

AAB [AB] = C

c conj E
AvB A=C B:CdisjE
C
A—B A B:Cian
C
A:>B'ffD1 B—_—>A'ffD2
- A not E

C

-p.6

Natural deduction for propositional logic

A B
AANB

conj |

A B ..
A\/BAdeISjll/Z

A—B.
A_p' "

A—B B:Aiffl
A=B

A — False

A not |

AAB [AB] = C

c conj E
C
A—B A B:Cian
C
A=B . A=B .
A:>B'ffD1 B—_—>A'ffD2
- A not E

C

-p.6

Natural deduction for propositional logic

A B
AANB

conj |

A B ..
A\/BAdeISjll/Z

A—B.
A_p' "

A—B B:Aiffl
A=B

A — False

A not |

AAB [AB] = C

c conj E
C
A—B A B:Cian
C
A=B . A=B .
A:>B'ffD1 B—_—>A'ffD2
- A AnotE

C

-p.6

Operational reading

Ar.. A,
A

—-p.7

Operational reading

Ar.. A,
A

Introduction rule:
To prove A it suffices to prove A, ... A,.

—-p.7

Operational reading

Ar.. A,
A

Introduction rule:
To prove A it suffices to prove A, ... A,.

Elimination rule
If | know A; and want to prove A
It suffices to prove A, ... A,.

—-p.7

Equality

-p.8

Equality

-p.8

Equality

s=t r=s s=t
sym
=g refl =g Y —¢ trans
s=t A(S)
A subst

Rarely needed explicitly — used implicitly by simp

-p.8

More rules

A—B A

-p.9

- A — False

A

More rules

A—B A

np

-A=—A
A

ccontr

cl assi cal

-p.9

More rules

A—B A
B n
ﬂA:;\ False ..ontr ﬁAA:> A ¢| assi cal

Remark:

ccontr and cl assi cal are not derivable from the
ND-rules.

-p.9

More rules

A—B A

B n
ﬂA:;\ False ..ontr ﬁAA:> A ¢| assi cal

Remark:

ccontr and cl assi cal are not derivable from the
ND-rules.
They make the logic “classical”, i.e. “non-constructive”.

-p.9

Proof by assumption

Al

- A assunpti on
A;

-p.10

Rule application: the rough idea

Applying rule [A;; ... ; A, | = Ato subgoal C:

Rule application: the rough idea

Applying rule [A;; ... ; A, | = Ato subgoal C:
Unify A and C

Rule application: the rough idea

Applying rule [A;; ... ; A, | = Ato subgoal C:
Unify A and C
Replace C with n new subgoals A; ... A,

Rule application: the rough idea

Applying rule [A;; ... ; A, | = Ato subgoal C:
Unify A and C
Replace C with n new subgoals A; ... A,
Working backwards, like in Prolog!

Rule application: the rough idea

Applying rule [A;; ... ; A, | = Ato subgoal C:
Unify A and C
Replace C with n new subgoals A; ... A,
Working backwards, like in Prolog!

Example: rule: [?P; ?Q] = ?P A ?Q
subgoal: 1. AAB

Rule application: the rough idea

Applying rule [A;; ... ; A, | = Ato subgoal C:
Unify A and C
Replace C with n new subgoals A; ... A,
Working backwards, like in Prolog!

Example: rule: [?P; ?Q] = ?P A ?Q
subgoal: 1. AAB
Result: 1. A
2.B

Rule application: the detalils

A

Rule: [[Al, .o ,An]]
B C

. —
Subgoal: 1.[By; ... ;B] =

Rule application: the detalils

Rule: [A;; ... ;AL] = A
Subgoal: 1.[By; ... ;B] =C
Substitution: a(A) = o(C)

Rule application: the detalils

Rule: [A;; ... ;AL] = A

Subgoal: 1.[By; ... ;B]=2C

Substitution: a(A) = o(C)
New subgoals: 1.0([Bi;... ;B] = Ay)

.n. o([B1;... ;Bn] = A))

Rule application: the detalils

Rule: [A;; ... ;AL] = A
Subgoal: 1.[By; ... ;B]=2C
Substitution: a(A) = o(C)
New subgoals: 1.0([Bi;... ;B] = Ay)
N.o([By1;... ;B] = Ay)
Command:

apply(rule <rulename>)

Proof by assumption

apply assumption
proves

1.|By;... ;B |=C

by unifying C with one of the B;

Proof by assumption

apply assumption
proves

1.|By;... ;B |=C

by unifying C with one of the B; (backtracking!)

Demo: application of introduction rule

Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
unifies first premise of rule with an assumption
eliminates that assumption

- p.15

Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
unifies first premise of rule with an assumption
eliminates that assumption

Example:
Rule: [?P A ?Q; [?P; ?Q] = ?R] = 7R
Subgoal: 1.[X;AAB)Y]| =<2

- p.15

Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
unifies first premise of rule with an assumption
eliminates that assumption

Example:
Rule: [?P A ?Q; [?P; ?Q] = ?R] = 7R
Subgoal: 1.[X;AAB)Y]| =<2
Unification: ?P A?Q=AABand?R =7

- p.15

Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
unifies first premise of rule with an assumption
eliminates that assumption

Example:

Rule: [?P A ?Q; [?P; ?Q] = ?R] = 7R
Subgoal: 1.[X;AAB)Y]| =<2
Unification: ?P A?Q=AABand?R =7
New subgoal: 1.[X;Y | =[A;B]=Z

- p.15

Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
unifies first premise of rule with an assumption

eliminates that assumption

Example:
Rule: [?P A ?Q; [?P; ?Q] = ?R] = 7R
Subgoal: 1.[X;AAB)Y]| =<2
Unification: ?P A?Q=AABand?R =7
New subgoal: 1.[X;Y | =[A;B]=Z
sameas: L [X;Y,;A;B]=Z

- p.15

How to prove it by natural deduction

Intro rules decompose formulae to the right of —-.
apply(rule <intro-rule>)

- p.16

How to prove it by natural deduction

Intro rules decompose formulae to the right of —-.
apply(rule <intro-rule>)

Elim rules decompose formulae on the left of —.
apply(erule <elim-rule>)

- p.16

Demo: examples

- p.17

Safe and unsafe rules

Safe rules preserve provability

-p.18

Safe and unsafe rules

Safe rules preserve provability
conjl, 1tnpl, notl, 1ffl, refl, ccontr,
classical, conjE, disjE

-p.18

Safe and unsafe rules

Safe rules preserve provability
conjl, 1tnpl, notl, 1ffl, refl, ccontr,
classical, conjE, disjE

Unsafe rules can turn a provable goal into an unprovable one

-p.18

Safe and unsafe rules

Safe rules preserve provability
conjl, 1tnpl, notl, 1ffl, refl, ccontr,
classical, conjE, disjE

Unsafe rules can turn a provable goal into an unprovable one
disjll, disjl2, inpE, iffDl, iffD2, notE

-p.18

Safe and unsafe rules

Safe rules preserve provability
conjl, 1tnpl, notl, 1ffl, refl, ccontr,
classical, conjE, disjE

Unsafe rules can turn a provable goal into an unprovable one
disjll, disjl2, inpE, iffDl, iffD2, notE

Apply safe rules before unsafe ones

-p.18

—> VS —

Write theorems as [Aq; ...; Al = A
notas A; A ... A A, — A (to ease application)

-p.19

—> VS —

Write theorems as [Aq; ...; Al = A
notas A; A ... A A, — A (to ease application)

Exception (in apply-style): induction variable must not
occur in the premises.

-p.19

—> VS —

Write theorems as [Aq; ...; Al = A
notas A; A ... A A, — A (to ease application)

Exception (in apply-style): induction variable must not
occur in the premises.

Example: [A; B(X) | = C(X) ~ A= B(x) — C(x)

-p.19

—> VS —

Write theorems as [Aq; ...; Al = A
notas A; A ... A A, — A (to ease application)

Exception (in apply-style): induction variable must not
occur in the premises.

Example: [A; B(X) | = C(X) ~ A= B(x) — C(x)

Reverse transformation (after proof):
lemma abc[rule format]: A — B(X) — C(X)

-p.19

Demo: further techniques

HOL: Predicate Logic

Parameters

Subgoal:
1. AX1 ... X,. FOormula

The x; are called parameters of the subgoal.
Intuition: local constants, i.e. arbitrary but fixed values.

- p.22

Parameters

Subgoal:

1. AX1 ... X,. FOormula

The x; are called parameters of the subgoal.
Intuition: local constants, i.e. arbitrary but fixed values.

Rules are automatically lifted over Ax; ... X,, and applied
directly to Formula.

- p.22

Scope

Scope of parameters: whole subgoal
Scope of vV, 3, ...: ends with ; or =

Scope

Scope of parameters: whole subgoal
Scope of vV, 3, ...: ends with ; or =

AXY. [VY.PYy —Qzy, QXxy]= IX. QXY
means

AXY. [(VY1.PyT — Qzyq); OXy]= 3IX1.QX 1Yy

a-Conversion

VX. P(x): X can appear in P(x).

-p.24

a-Conversion

VX. P(x): X can appear in P(x).
Example: VX. X = X Is obtained by P — Au. u=u

-p.24

a-Conversion

VX. P(x): X can appear in P(x).
Example: VX. X = X Is obtained by P — Au. u=u
VX. P: X cannot appear in P.

-p.24

a-Conversion

VX. P(x): X can appear in P(x).

Example: VX. X = X Is obtained by P — Au. u=u
VX. P: X cannot appear in P.

Example: P — x=xyields VXx. x = X

-p.24

a-Conversion

VX. P(x): X can appear in P(x).

Example: VX. X = X Is obtained by P — Au. u=u
VX. P: X cannot appear in P.

Example: P — x=xyields VXx. x = X

Bound variables are renamed automatically to avoid name
clashes with other variables.

-p.24

Natural deduction for quantifiers

vV X. P(X)
vV X. P(x) al 1l R

IX. P(X)
IX. P(X) ex] R

al | E

exkE

Natural deduction for quantifiers

AX. P(x) L vV X. P(X)
vV X. P(x) 4 R

IX. P(X)
IX. P(X) ex] R

al | E

exkE

Natural deduction for quantifiers

AX. P(x) vV X. P(X)
7x. P(X) al |1 R al | E
P(?X) | IX. P(X) ex E

IX. P(X) © R

Natural deduction for quantifiers

AX. P(X) vVX. P(xX) P(?X) =R
7x. P(X) al |1 R al | E
P(?X) | IX. P(X) ex E

IX. P(X) © R

Natural deduction for quantifiers

AX. P(X) Al vX. P(X) P(?X) = R
vV X. P(X) R

P(?X) x| Ix. P(X) AXx.P(X) = R
IX. P(X) R

al | E

exkE

Natural deduction for quantifiers

AX. P(X) vVX. P(xX) P(?X) =R

7x. P(X) al | | R al | E
P(?X) Ix. P(X) AXx.P(X) = R

IX. P(X) ex] R exE

al I I and exE introduce new parameters (/A\X).

Natural deduction for quantifiers

AX. P(X) vVX. P(xX) P(?X) =R

7x. P(X) al | | R al | E
P(?X) Ix. P(X) AXx.P(X) = R

IX. P(X) ex] R exE

al I I and exE introduce new parameters (/A\X).
al | Eand ex! introduce new unknowns (?x).

Instantiating rules

apply(rule_tac x = "term" In rule)

Like rule, but ?x In rule IS instantiated by term before
application.

- p.26

Instantiating rules

apply(rule_tac x = "term" In rule)

Like rule, but ?x In rule IS instantiated by term before
application.

Similar: erule_tac

- p.26

Instantiating rules

apply(rule_tac x = "term" In rule)

Like rule, but ?x In rule IS instantiated by term before
application.

Similar: erule_tac

| xisin rule, not in the goal '

- p.26

Two successful proofs

1. VX. dy. Xx=y

- p.27

Two successful proofs

1. VX. dy. Xx=y
apply(rule alll)

- p.27

Two successful proofs

1. VX. dy. Xx=y
apply(rule alll)

1. AX. dy. xX=y

- p.27

Two successful proofs

1. VX. dy. Xx=y
apply(rule alll)
1. AX. dy. xX=y
best practice
apply(rule_tac x = "x" in exl)

- p.27

Two successful proofs

1. VX. dy. Xx=y
apply(rule alll)
1. AX. dy. xX=y
best practice
apply(rule_tac x = "x" in exl)
1. AX. X=X

- p.27

Two successful proofs

1. VX. dy. Xx=y
apply(rule alll)
1. AX. dy. xX=y
best practice
apply(rule_tac x = "x" in exl)
1. AX. X=X
apply(rule refl)

- p.27

Two successful proofs

1. VX. dy. Xx=y
apply(rule alll)
1. AX. dy. xX=y
best practice exploration
apply(rule_tac x = "x" in exl) apply(rule exl)

1. AX. X=X
apply(rule refl)

- p.27

Two successful proofs

1. VX. dy. Xx=y
apply(rule alll)
1. AX. dy. xX=y
best practice exploration
apply(rule_tac x = "x" in exl) apply(rule exl)
1. AX. X=X 1. AX. X =72y X

apply(rule refl)

- p.27

Two successful proofs

1. VX. dy. Xx=y
apply(rule alll)
1. AX. dy. xX=y
best practice exploration
apply(rule_tac x = "x" in exl) apply(rule exl)
1. AX. X=X 1. AX. X =72y X

apply(rule refl) apply(rule refl)

- p.27

Two successful proofs

1. VX. dy. Xx=y
apply(rule alll)
1. AX. dy. xX=y
best practice exploration
apply(rule_tac x = "x" in exl) apply(rule exl)
1. AX. X=X 1. AX. X =72y X
apply(rule refl) apply(rule refl)

?y —

- p.27

Two successful proofs

1. VX. dy. Xx=y
apply(rule alll)
1. AX. dy. xX=y
best practice
apply(rule_tac x = "x" in exl)
1. AX. X=X

apply(rule refl)

exploration
apply(rule exl)
1. AX. X =72y X
apply(rule refl)
?y — AU. U

- p.27

Two successful proofs

1. VX. dy. Xx=y

apply(rule alll)

1. AX. dy. xX=y
best practice exploration
apply(rule_tac x = "x" in exl) apply(rule exl)
1. AX. X=X 1. AX. X =72y X
apply(rule refl) apply(rule refl)

?y — AU. U

simpler & clearer shorter & trickier

-p.27

Two unsuccessful proofs

1. dy. VX. X =Yy

-p.28

Two unsuccessful proofs

1. dy. VX. X =Yy
apply(rule_tac x = ??7? in exl)

-p.28

Two unsuccessful proofs

1. dy. VX. X =Yy
apply(rule_tac x = ??7? in exl) apply(rule exl)
1.VX. X=7y

-p.28

Two unsuccessful proofs

1. dy. VX. X =Yy
apply(rule_tac x = ??7? in exl) apply(rule exl)
1.VX. X=7y

apply(rule alll)
1. AX. X =7y

-p.28

Two unsuccessful proofs

1. dy. VX. X =Yy
apply(rule_tac x = ??7? in exl) apply(rule exl)
1.VX. X=7y
apply(rule alll)
1. AX. X =7y

apply(rule refl)

-p.28

Two unsuccessful proofs

1. dy. VX. X =Yy
apply(rule_tac x = ??7? in exl) apply(rule exl)
1.VX. X=7y
apply(rule alll)
1. AX. X =7y

apply(rule refl)
?y — X ylelds AX’. X’ =X

-p.28

Two unsuccessful proofs

1. dy. VX. X =Yy
apply(rule_tac x = ??7? in exl) apply(rule exl)
1.VX. X=7y
apply(rule alll)
1. AX. X =7y

apply(rule refl)
?y — X ylelds AX’. X’ =X

Principle:

?f X1 ... X, can only be replaced by term ¢
If params(t) C {X1, ..., Xn}

-p.28

Demo: quantifier proofs

Safe and unsafe rules

Safe al | |, exE
Unsafe al | E, exl

-p.30

Safe and unsafe rules

Safe al | |, exE
Unsafe al | E, exl

Create parameters first, unknowns later

-p.30

Proof methods

Parameter names

Parameter names are chosen by Isabelle

-p.32

Parameter names

Parameter names are chosen by Isabelle

1. VX. dy. Xx=y
apply(rule alll)
1. AX. dy. X =y

apply(rule_tac x ="x" in exl)

- p.32

Parameter names

Parameter names are chosen by Isabelle

1. VX. dy. Xx=y
apply(rule alll)
1. AX. dy. X =y

apply(rule_tac x ="x" in exl)

Brittle!

- p.32

Renaming parameters

1. VX. dy. X =y
apply(rule alll)
1. AX. dy. xX=y

apply(rename_tac Xxxx)
1. AXXX. Y. XXX =y

apply(rule_tac x = "xxx" in exl)

-p.33

Renaming parameters

1. VX. dy. X =y
apply(rule alll)
1. AX. dy. xX=y

apply(rename_tac Xxxx)
1. AXXX. Y. XXX =y

apply(rule_tac x = "xxx" in exl)

In general:

(rename_tac x; ... X,) renames the rightmost
(inner) n parameters to x; ... X,

-p.33

Forward proofs: frule and drule

“Forward” rule: A; — A
Subgoal: 1.[By; ... ;B] =C

-p.34

Forward proofs: frule and drule

“Forward” rule: A; — A
Subgoal: 1.[By; ... ;B] =C
Substitution: a(B;) = o(A;)

-p.34

Forward proofs: frule and drule

“Forward” rule: A; — A

Subgoal: 1.[By; ... ;B] =C
Substitution: a(B;) = o(A;)

New subgoal: 1.0([By;... ;B A] = C)

-p.34

Forward proofs: frule and drule

“Forward” rule: A; — A

Subgoal: 1.[By;... ;B] =C

Substitution: a(B;) = o(A;)

New subgoal: 1.0([By;... ;B A] = C)
Command:

apply(frule rulename)

-p.34

Forward proofs: frule and drule

“Forward” rule: A; — A

Subgoal: 1.[By;... ;B] =C

Substitution: a(B;) = o(A;)

New subgoal: 1.0([By;... ;B A] = C)
Command:

apply(frule rulename)

Like frule but also deletes B;:
apply(drule rulename)

-p.34

frule and drule: the general case

Rule: A, ... ;AL] = A
Creates additional subgoals:

.m-l. o([B1;... B,] = An)
m.o([By;... ;B,; A] = C)

-p.35

Forward proofs: OF

NOFrq, ... r1,]

Prove assumption 1 of theorem r with theorem r,
and assumption 2 with theoremr,, and ...

- p.36

Forward proofs: OF

NOFrq, ... r1,]

Prove assumption 1 of theorem r with theorem r,
and assumption 2 with theoremr,, and ...

Ruler [A; ... AL] = A
Rule rq [Bi;...;B,] =B
Substitution ¢(B) = o(Aq)

[OF r4]

- p.36

Forward proofs: OF

NOFrq, ... r1,]

Prove assumption 1 of theorem r with theorem r,
and assumption 2 with theoremr,, and ...

Ruler [A; ... AL] = A
Rule ry |By; ... ;B =B
Substitution ¢(B) = o(Aq)

[OF r4] o([B1;...; B Ag; ... A] = A)

- p.36

Forward proofs: THEN

r{[THENr;] means ry[OF rq]

Clarifying the goal

Clarifying the goal

apply(intro ...)
Repeated application of intro rules

Example: apply(intro alll)

-p.38

Clarifying the goal

apply(intro ...)
Repeated application of intro rules

Example: apply(intro alll)

apply(elim ...)
Repeated application of elim rules
Example: apply(elim conjE)

-p.38

Clarifying the goal

apply(intro ...)
Repeated application of intro rules

Example: apply(intro alll)

apply(elim ...)
Repeated application of elim rules
Example: apply(elim conjE)

apply(clarify)
Repeated application of safe rules
without splitting the goal

-p.38

Clarifying the goal

apply(intro ...)
Repeated application of intro rules

Example: apply(intro alll)

apply(elim ...)
Repeated application of elim rules

Example: apply(elim conjE)

apply(clarify)
Repeated application of safe rules

without splitting the goal

apply(clarsimp simp add: ...)
Combination of clarify and simp.

-p.38

Demo: proof methods

		extcolor {darkblue}{Overview}
		extcolor {darkblue}{Rule notation}
		extcolor {darkblue}{Natural deduction}
		extcolor {darkblue}{Natural deduction for propositional logic}
		extcolor {darkblue}{Operational reading}
		extcolor {darkblue}{Equality}
		extcolor {darkblue}{More rules}
		extcolor {darkblue}{Proof by assumption}
		extcolor {darkblue}{Rule application: the rough idea}
		extcolor {darkblue}{Rule application: the details}
		extcolor {darkblue}{Proof by assumption}
		extcolor {darkblue}{Applying elimination rules}
		extcolor {darkblue}{How to prove it by natural deduction}
		extcolor {darkblue}{Safe and unsafe rules}
		extcolor {darkblue}{isa {{isasymLongrightarrow }} vs isa {{isasymlongrightarrow }}}
		extcolor {darkblue}{Parameters}
		extcolor {darkblue}{Scope}
		extcolor {darkblue}{$alpha $-Conversion}
		extcolor {darkblue}{Natural deduction for quantifiers}
		extcolor {darkblue}{Instantiating rules}
		extcolor {darkblue}{Two successful proofs}
		extcolor {darkblue}{Two unsuccessful proofs}
		extcolor {darkblue}{Safe and unsafe rules}
		extcolor {darkblue}{Parameter names}
		extcolor {darkblue}{Renaming parameters}
		extcolor {darkblue}{Forward proofs: frule and drule}
		extcolor {darkblue}{frule and drule: the general case}
		extcolor {darkblue}{Forward proofs: OF}
		extcolor {darkblue}{Forward proofs: THEN}
		extcolor {darkblue}{Clarifying the goal}

