Induction heuristics

Basic heuristics

Theorems about recursive functions are proved by induction

Basic heuristics

Theorems about recursive functions are proved by induction

Induction on argument number i of f
if f is defined by recursion on argument number i

A tail recursive reverse

consts itrev :: 'a list \Rightarrow 'a list \Rightarrow 'a list

A tail recursive reverse

```
consts itrev :: 'a list => 'a list => 'a list
primrec
itrev [] ys = ys
itrev (x#xs) ys =
```


A tail recursive reverse

consts itrev :: 'a list \Rightarrow 'a list \Rightarrow 'a list primrec
itrev [] $\quad y s=y s$
itrev (x\#xs) ys = itrev xs (x\#ys)

A tail recursive reverse

consts itrev :: 'a list \Rightarrow 'a list \Rightarrow 'a list primrec
itrev [] $\quad y s=y s$
itrev (x\#xs) ys = itrev xs (x\#ys)
lemma itrev $x s[]=r e v x s$

A tail recursive reverse

consts itrev :: 'a list \Rightarrow 'a list \Rightarrow 'a list primrec
itrev [] $\quad y s=y s$
itrev (x\#xs) ys = itrev xs (x\#ys)
lemma itrev $x s[]=r e v x s$
Why in this direction?

A tail recursive reverse

consts itrev :: 'a list \Rightarrow 'a list \Rightarrow 'a list primrec
itrev [] ys =ys
itrev (x\#xs) ys = itrev xs (x\#ys)
lemma itrev xs [] = rev xs
Why in this direction?
Because the lhs is "more complex" than the rhs.

Demo: first proof attempt

Generalisation (1)

Replace constants by variables

lemma itrev xs ys =rev xs @ys

Demo: second proof attempt

Generalisation (2)

Quantify free variables by \forall (except the induction variable)

lemma $\forall y s . i t r e v x s y s=r e v x s @ y s$

