Proof by Simplification

Overview

- Term rewriting foundations
- Term rewriting in Isabelle/HOL
- Basic simplification
- Extensions

Term rewriting foundations

Term rewriting means ...

Using equations $l=r$ from left to right

Term rewriting means ...

Using equations $l=r$ from left to right
As long as possible

Term rewriting means ...

Using equations $l=r$ from left to right
As long as possible
Terminology: equation \leadsto rewrite rule

An example

Equations:

$$
\begin{align*}
0+n & =n \tag{1}\\
(\text { Suc } m)+n & =\operatorname{Suc}(m+n) \tag{2}
\end{align*}
$$

An example

Equations:

$$
\begin{align*}
& 0+n=n \tag{1}\\
&(\text { Suc } m)+n=\text { Suc }(m+n) \tag{2}\\
&(\text { Suc } m \leq \text { Suc } n)=(m \leq n) \\
&(0 \leq m)=\text { True } \\
& 0+\text { Suc } 0 \leq \text { Suc } 0+x
\end{align*}
$$

Rewriting:

An example

Equations:

$$
\begin{align*}
0+n & =n \tag{1}\\
(\text { Suc } m)+n & =\text { Suc }(m+n) \tag{2}\\
(\text { Suc } m \leq \text { Suc } n) & =(m \leq n) \tag{3}\\
(0 \leq m) & =\text { True } \tag{4}\\
0+\text { Suc } 0 & \leq \text { Suc } 0+x \quad \stackrel{(1)}{=} \\
\text { Suc } 0 \leq & \text { Suc } 0+x
\end{align*}
$$

Rewriting:

An example

Equations:

$$
\begin{align*}
0+n & =n \tag{1}\\
(\text { Suc } m)+n & =\text { Suc }(m+n) \tag{2}\\
(\text { Suc } m \leq \text { Suc } n) & =(m \leq n) \tag{3}\\
(0 \leq m) & =\text { True } \tag{4}
\end{align*}
$$

$$
\begin{aligned}
0+\text { Suc } 0 & \leq \text { Suc } 0+x \quad \stackrel{(1)}{=} \\
\text { Suc } 0 & \leq \text { Suc } 0+x \quad \stackrel{(2)}{=}
\end{aligned}
$$

Rewriting:

$$
\text { Suc } 0 \leq \operatorname{Suc}(0+x)
$$

An example

Equations:

$$
\begin{align*}
0+n & =n \tag{1}\\
(\text { Suc } m)+n & =\text { Suc }(m+n) \tag{2}\\
(\text { Suc } m \leq \text { Suc } n) & =(m \leq n) \tag{3}\\
(0 \leq m) & =\text { True } \tag{4}\\
0+\text { Suc } 0 & \leq \text { Suc } 0+x \quad \stackrel{(1)}{=} \\
\text { Suc } 0 & \leq \text { Suc } 0+x \quad \stackrel{(2)}{=} \\
\text { Suc } 0 & \leq \operatorname{Suc}(0+x) \stackrel{(3)}{=} \\
0 & \leq 0+x
\end{align*}
$$

Rewriting:

An example

Equations:

$$
\begin{align*}
0+n & =n \tag{1}\\
(\text { Suc } m)+n & =\text { Suc }(m+n) \tag{2}\\
(\text { Suc } m \leq \text { Suc } n) & =(m \leq n) \tag{3}\\
(0 \leq m) & =\text { True } \tag{4}
\end{align*}
$$

$$
\begin{align*}
0+\text { Suc } 0 & \leq \text { Suc } 0+x \tag{1}\\
\text { Suc } 0 & \leq \text { Suc } 0+x \tag{2}
\end{align*}
$$

$$
\text { Suc } 0 \leq \text { Suc }(0+x) \stackrel{(3)}{=}
$$

$$
\begin{equation*}
0 \leq 0+x \tag{4}
\end{equation*}
$$

True

More formally

substitution = mapping from variables to terms

More formally

substitution = mapping from variables to terms

- $l=r$ is applicable to term $t[s]$
if there is a substitution σ such that $\sigma(l)=s$

More formally

substitution = mapping from variables to terms

- $l=r$ is applicable to term $t[s]$ if there is a substitution σ such that $\sigma(l)=s$
- Result: $t[\sigma(r)]$

More formally

substitution = mapping from variables to terms

- $l=r$ is applicable to term $t[s]$
if there is a substitution σ such that $\sigma(l)=s$
- Result: $t[\sigma(r)]$
- Note: $t[s]=t[\sigma(r)]$

More formally

substitution = mapping from variables to terms

- $l=r$ is applicable to term $t[s]$ if there is a substitution σ such that $\sigma(l)=s$
- Result: $t[\sigma(r)]$
- Note: $t[s]=t[\sigma(r)]$

Example:

Equation: $0+n=n$
Term: $a+(0+(b+c))$

More formally

substitution = mapping from variables to terms

- $l=r$ is applicable to term $t[s]$ if there is a substitution σ such that $\sigma(l)=s$
- Result: $t[\sigma(r)]$
- Note: $t[s]=t[\sigma(r)]$

Example:

Equation: $0+n=n$
Term: $a+(0+(b+c))$
$\sigma=\{n \mapsto b+c\}$

More formally

substitution = mapping from variables to terms

- $l=r$ is applicable to term $t[s]$ if there is a substitution σ such that $\sigma(l)=s$
- Result: $t[\sigma(r)]$
- Note: $t[s]=t[\sigma(r)]$

Example:

Equation: $0+n=n$
Term: $a+(0+(b+c))$
$\sigma=\{n \mapsto b+c\}$
Result: $a+(b+c)$

Extension: conditional rewriting

Rewrite rules can be conditional:

$$
\llbracket P_{1} \ldots P_{n} \rrbracket \Longrightarrow l=r
$$

Extension: conditional rewriting

Rewrite rules can be conditional:

$$
\llbracket P_{1} \ldots P_{n} \rrbracket \Longrightarrow l=r
$$

is applicable to term $t[s]$ with σ if

- $\sigma(l)=s$ and
- $\sigma\left(P_{1}\right), \ldots, \sigma\left(P_{n}\right)$ are provable (again by rewriting).

Interlude: Variables in Isabelle

Schematic variables

Three kinds of variables:

- bound: $\forall x . x=x$
- free: $x=x$

Schematic variables

Three kinds of variables:

- bound: $\forall x . x=x$
- free: $x=x$
- schematic: ? $x=? x$ ("unknown")

Schematic variables

Three kinds of variables:

- bound: $\forall x . x=x$
- free: $x=x$
- schematic: ? $x=? x$ ("unknown")

Can be mixed: $\forall b$. f ?a $y=b$

Schematic variables

Three kinds of variables:

- bound: $\forall x . x=x$
- free: $x=x$
- schematic: ? $x=? x$ ("unknown")

Can be mixed: $\forall b$. f ?a $y=b$

- Logically: free = schematic

Schematic variables

Three kinds of variables:

- bound: $\forall x . x=x$
- free: $x=x$
- schematic: ? $x=? x$ ("unknown")

Can be mixed: $\forall b$. f ?a $y=b$

- Logically: free = schematic
- Operationally:
- free variables are fixed
- schematic variables are instantiated by substitutions

From x to ?x

State lemmas with free variables:
lemma app_Nil2[simp]: "xs @ [] = xs"

From x to ?x

State lemmas with free variables:
lemma app_Nil2[simp]: "xs @ [] =xs"
!
done

From x to ?x

State lemmas with free variables:
lemma app_Nil2[simp]: "xs @ [] = xs"
done
After the proof: Isabelle changes xs to ?xs (internally):
?xs @ [] = ?xs

Now usable with arbitrary values for ?xs

From x to ?x

State lemmas with free variables:
lemma app_Nil2[simp]: "xs @ [] = xs"
done
After the proof: Isabelle changes xs to ?xs (internally):
?xs @ [] = ?xs

Now usable with arbitrary values for ?xs
Example: rewriting

$$
\operatorname{rev}(a @[])=r e v a
$$

using app_Nil2 with $\sigma=\{? \times s \mapsto a\}$

Term rewriting in Isabelle

Basic simplification

Goal: 1. $\llbracket P_{1} ; \ldots ; P_{m} \rrbracket \Longrightarrow C$ apply(simp add: $e q_{1} \ldots e q_{n}$)

Basic simplification

Goal: 1. $\llbracket P_{1} ; \ldots ; P_{m} \rrbracket \Longrightarrow C$
apply (simp add: $e q_{1} \ldots e q_{n}$)
Simplify $P_{1} \ldots P_{m}$ and C using

- lemmas with attribute simp

Basic simplification

Goal: 1. $\llbracket P_{1} ; \ldots ; P_{m} \rrbracket \Longrightarrow C$
apply (simp add: $e q_{1} \ldots e q_{n}$)
Simplify $P_{1} \ldots P_{m}$ and C using

- lemmas with attribute simp
- rules from primrec and datatype

Basic simplification

Goal: 1. $\llbracket P_{1} ; \ldots ; P_{m} \rrbracket \Longrightarrow C$
apply (simp add: $e q_{1} \ldots e q_{n}$)
Simplify $P_{1} \ldots P_{m}$ and C using

- lemmas with attribute simp
- rules from primrec and datatype
- additional lemmas $e q_{1} \ldots e q_{n}$

Basic simplification

Goal: 1. $\llbracket P_{1} ; \ldots ; P_{m} \rrbracket \Longrightarrow C$
apply (simp add: $e q_{1} \ldots e q_{n}$)
Simplify $P_{1} \ldots P_{m}$ and C using

- lemmas with attribute simp
- rules from primrec and datatype
- additional lemmas $e q_{1} \ldots e q_{n}$
- assumptions $P_{1} \ldots P_{m}$

Basic simplification

Goal: 1. $\llbracket P_{1} ; \ldots ; P_{m} \rrbracket \Longrightarrow C$
apply(simp add: $\left.e q_{1} \ldots e q_{n}\right)$
Simplify $P_{1} \ldots P_{m}$ and C using

- lemmas with attribute simp
- rules from primrec and datatype
- additional lemmas $e q_{1} \ldots e q_{n}$
- assumptions $P_{1} \ldots P_{m}$

Variations:

- (simp ... del: ...) removes simp-lemmas
- add and del are optional

auto versus simp

- auto acts on all subgoals
- simp acts only on subgoal 1
- auto applies simp and more

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.
Example: $f(x)=g(x), g(x)=f(x)$

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.
Example: $f(x)=g(x), g(x)=f(x)$

$$
\llbracket P_{1} \ldots P_{n} \rrbracket \Longrightarrow l=r
$$

is suitable as a simp-rule only
if l is "bigger" than r and each P_{i}

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.
Example: $f(x)=g(x), g(x)=f(x)$

$$
\llbracket P_{1} \ldots P_{n} \rrbracket \Longrightarrow l=r
$$

is suitable as a simp-rule only
if l is "bigger" than r and each P_{i}
$n<m \Longrightarrow(n<$ Suc $m)=$ True
Suc $n<m \Longrightarrow(n<m)=$ True

Termination

Simplification may not terminate. Isabelle uses simp-rules (almost) blindly from left to right.
Example: $f(x)=g(x), g(x)=f(x)$

$$
\llbracket P_{1} \ldots P_{n} \rrbracket \Longrightarrow l=r
$$

is suitable as a simp-rule only
if l is "bigger" than r and each P_{i}

$$
\begin{aligned}
& n<m \Longrightarrow(n<\text { Suc } m)=\text { True YES } \\
& \text { Suc } n<m \Longrightarrow(n<m)=\text { True NO }
\end{aligned}
$$

How to ignore assumptions

Assumptions sometimes cause problems, e.g. nontermination. How to exclude them from simp:

How to ignore assumptions

Assumptions sometimes cause problems, e.g. nontermination. How to exclude them from simp:
apply(simp (no_asm_simp) ...)
Simplify only conclusion

How to ignore assumptions

Assumptions sometimes cause problems, e.g. nontermination. How to exclude them from simp:
apply(simp (no_asm_simp) ...)
Simplify only conclusion
apply(simp (no_asm_use) ...)
Simplify but do not use assumptions

How to ignore assumptions

Assumptions sometimes cause problems, e.g. nontermination. How to exclude them from simp:
apply(simp (no_asm_simp) ...)
Simplify only conclusion
apply(simp (no_asm_use) ...)
Simplify but do not use assumptions
apply(simp (no_asm) ...)
Ignore assumptions completely

Rewriting with definitions (constdefs)

Definitions do not have the simp attribute.

Rewriting with definitions (constdefs)

Definitions do not have the simp attribute.
They must be used explicitly: (simp add: f_def ...)

Extensions of rewriting

Local assumptions

Simplification of $A \longrightarrow B$:

1. Simplify A to A^{\prime}
2. Simplify B using A^{\prime}

Case splitting with simp

P(if A then s else t)

$(A \longrightarrow P(s)) \wedge(\neg A \longrightarrow P(t))$

Case splitting with simp

$$
\begin{gathered}
P(\text { if } A \text { then s else } t) \\
== \\
(A \longrightarrow P(s)) \wedge(\neg A \longrightarrow P(t))
\end{gathered}
$$

Automatic

Case splitting with simp

P (if A then s else t)

$$
(A \longrightarrow P(s)) \wedge(\neg A \longrightarrow P(t))
$$

Automatic

$$
\begin{gathered}
P(\text { case e of } 0 \Rightarrow a \mid \text { Suc } n \Rightarrow b) \\
(e=0 \longrightarrow P(a)) \wedge(\forall n \cdot e=\operatorname{Suc} n \longrightarrow P(b))
\end{gathered}
$$

Case splitting with simp

P(if A then s else t)

$$
(A \longrightarrow P(s)) \wedge(\neg A \longrightarrow P(t))
$$

Automatic

$$
\begin{gathered}
P(\text { case e of } 0 \Rightarrow a \mid \text { Suc } n \Rightarrow b) \\
(e=0 \longrightarrow P(a)) \wedge(\forall n \cdot e=\text { Suc } n \longrightarrow P(b))
\end{gathered}
$$

By hand: (simp split: nat.split)

Case splitting with simp

P(if A then s else t)

$$
(A \longrightarrow P(s)) \wedge(\neg A \longrightarrow P(t))
$$

Automatic

$$
\begin{gathered}
P(\text { case e of } 0 \Rightarrow a \mid \text { Suc } n \Rightarrow b) \\
(e=0 \longrightarrow P(a)) \wedge(\forall n \cdot e=\text { Suc } n \longrightarrow P(b))
\end{gathered}
$$

By hand: (simp split: nat.split)
Similar for any datatype t : t.split

Ordered rewriting

Problem: $? x+? y=? y+? x$ does not terminate

Ordered rewriting

Problem: $? x+? y=? y+? x$ does not terminate
Solution: permutative simp-rules are used only if the term becomes lexicographically smaller.

Ordered rewriting

Problem: $? x+? y=? y+? x$ does not terminate
Solution: permutative simp-rules are used only if the term becomes lexicographically smaller.
Example: $b+a \leadsto a+b$ but not $a+b \leadsto b+a$.

Ordered rewriting

Problem: $? x+? y=? y+? x$ does not terminate
Solution: permutative simp-rules are used only if the term becomes lexicographically smaller.
Example: $b+a \leadsto a+b$ but not $a+b \leadsto b+a$.
For types nat, int etc:

- lemmas add_ac sort any sum (+)
- lemmas times_ac sort any product (*)

Ordered rewriting

Problem: $? x+? y=? y+? x$ does not terminate
Solution: permutative simp-rules are used only if the term becomes lexicographically smaller.
Example: $b+a \leadsto a+b$ but not $a+b \leadsto b+a$.
For types nat, int etc:

- lemmas add_ac sort any sum (+)
- lemmas times_ac sort any product (*)

Example: (simp add: add_ac) yields

$$
(b+c)+a \leadsto \cdots \leadsto a+(b+c)
$$

Preprocessing

simp-rules are preprocessed (recursively) for maximal simplification power:

$$
\begin{aligned}
\neg A & \mapsto A=\text { False } \\
A \longrightarrow B & \mapsto A \Longrightarrow B \\
A \wedge B & \mapsto A, B \\
\forall x \cdot A(x) & \mapsto A(? x) \\
A & \mapsto A=\text { True }
\end{aligned}
$$

Preprocessing

simp-rules are preprocessed (recursively) for maximal simplification power:

$$
\begin{aligned}
\neg A & \mapsto A=\text { False } \\
A \longrightarrow B & \mapsto A \Longrightarrow B \\
A \wedge B & \mapsto A, B \\
\forall x \cdot A(x) & \mapsto A(? x) \\
A & \mapsto A=\text { True }
\end{aligned}
$$

Example:

$(p \longrightarrow q \wedge \neg r) \wedge s \quad \mapsto$

Preprocessing

simp-rules are preprocessed (recursively) for maximal simplification power:

$$
\begin{aligned}
\neg A & \mapsto A=\text { False } \\
A \longrightarrow B & \mapsto A \Longrightarrow B \\
A \wedge B & \mapsto A, B \\
\forall x \cdot A(x) & \mapsto A(? x) \\
A & \mapsto A=\text { True }
\end{aligned}
$$

Example:

$(p \longrightarrow q \wedge \neg r) \wedge s \quad \mapsto \quad p \Longrightarrow q=$ True,$r=$ False,$s=$ True

When everything else fails: Tracing

Set trace mode on/off in Proof General:

Isabelle/Isar \rightarrow Settings \rightarrow Trace simplifier

Output in separate buffer:
Proof-General \rightarrow Buffers \rightarrow Trace

Demo: simp

