Proof by Simplification

Overview

Term rewriting foundations

Term rewriting in Isabelle/HOL
Basic simplification
Extensions

-p.2

Term rewriting foundations

-p.3

Term rewriting means ...

Using equations [= r from left to right

—p.4

Term rewriting means ...

Using equations [= r from left to right
As long as possible

—p.4

Term rewriting means ...

Using equations [= r from left to right
As long as possible

Terminology: equation ~» rewrite rule

—p.4

An example

O+n = n (1)

. (Sucm)+n = Suc(m+n) (2)
=quations: (Sucm < Sucn) = (m<n) (3)
(4)

(0<m) = True 4

Equations:

Rewriting:

An example

O+n = n
(Sucm)+n = Suc(m+n)
(Sucm < Sucn) = (m<n)
(0<m) = True

O+ SucO < SucO0+x

/N 7N 7N /N

1
2
3
4

)
)
)
)

-p.5

Equations:

Rewriting:

An example

O+n = n
(Sucm)+n = Suc(m+n)
(Sucm < Sucn) = (m<n)
(0<m) = True
0+ SucO < SucO-+=zx (:
Suc < Suc0+zx

-p.5

Equations:

Rewriting:

An example

O04+n = n (1)
(Sucm)+n = Suc(m+n) (2)
(Sucm < Sucn) = (m<n) (3)
(0<m) = True (4)
O+ SucO < SucO0+x (2
Suc < Suc0+zx @
Suc 0 < Suc (0+ x)

-p.5

Equations:

Rewriting:

An example

1)
2)
)
)

n

0+n
(Suc m) +n Suc (m + n)
(Suc m < Suc n) (m <n)

(0<m) = True

3
4

/N 7N 7N /N

Suc 0+ x L

Suc 0+ x 2

Suc (0 + z) l

0+ x

VN
N—"

0+ Suc 0
Suc 0
Suc 0

0

VAN

/N
N—"

I

VN
N—"

VAN

VAN

-p.5

Equations:

Rewriting:

An example

0+
(Suc m) +

(Suc m < Suc n)
(0 <m)

0+ Suc 0
Suc 0
Suc 0

0

n

n

VAN

I

<

VAN

True

n

(m < n)

= True

Suc 0+ x
Suc 0+ x
Suc (0 + x)
0+ 2

Suc (m+n)

/N 7N N /N
AN

p—t

o

N— e N N

-p.5

More formally

substitution = mapping from variables to terms

-p.6

More formally

substitution = mapping from variables to terms

[= r Is applicable to term t¢|s]
If there Is a substitution ¢ such that o(/) = s

-p.6

More formally

substitution = mapping from variables to terms

[= r Is applicable to term t¢|s]
If there Is a substitution ¢ such that o(/) = s

Result: t[o(r)]

-p.6

More formally

substitution = mapping from variables to terms

[= r Is applicable to term t¢|s]
If there Is a substitution ¢ such that o(/) = s

Result: t[o(r)]
Note: t[s] = t[o(r)]

-p.6

More formally

substitution = mapping from variables to terms

[= r Is applicable to term t¢|s]
If there Is a substitution ¢ such that o(/) = s

Result: t[o(r)]
Note: t[s] = t[o(r)]

Example:
Equation: 0 +n =n
Term: a+ (0+(b+c¢))

-p.6

More formally

substitution = mapping from variables to terms

[= r Is applicable to term t¢|s]
If there Is a substitution ¢ such that o(/) = s

Result: t[o(r)]
Note: t[s] = t[o(r)]

Example:
Equation: 0 +n =n
Term: a+ (0+(b+c¢))
oc={n—b+c}

-p.6

More formally

substitution = mapping from variables to terms

[= r Is applicable to term t¢|s]
If there Is a substitution ¢ such that o(/) = s

Result: t[o(r)]
Note: t[s] = t[o(r)]

Example:
Equation: 0 +n =n
Term: a+ (0+(b+c¢))
oc={n—b+c}
Result: a + (b+ ¢)

-p.6

Extension: conditional rewriting

Rewrite rules can be conditional:

[[Pl...Pn]]:>l:7“

—-p.7

Extension: conditional rewriting

Rewrite rules can be conditional:
[[Pl...Pn]] — =7

IS applicable to term t[s] with o if
o(l) = s and
o(P), ..., o(P,) are provable (again by rewriting).

Interlude: Variables In Isabelle

-p.8

Schematic variables

Three kinds of variables:
bound: VX. X = X
free: x = X

-p.9

Schematic variables

Three kinds of variables:
bound: VX. X =X
free: X =X
schematic: ?x = ?x (“unknown”)

-p.9

Schematic variables

Three kinds of variables:

bound: VX. X =X

free: X =X

schematic: ?x = ?x (“unknown”)
Can be mixed: Vb.f?ay=Db

-p.9

Schematic variables

Three kinds of variables:

bound: VX. X =X

free: X =X

schematic: ?x = ?x (“unknown”)
Can be mixed: Vb.f?ay=Db

Logically: free = schematic

-p.9

Schematic variables

Three kinds of variables:

bound: VX. X =X

free: X =X

schematic: ?x = ?x (“unknown”)
Can be mixed: Vb.f?ay=Db

Logically: free = schematic

Operationally:
free variables are fixed
schematic variables are instantiated by substitutions

-p.9

From X to ?X

State lemmas with free variables:
lemma app_Nil2[simp]: "xs @ [] = xs"

From X to ?X

State lemmas with free variables:
lemma app_Nil2[simp]: "xs @ [] = xs"

done

-p.10

From X to ?X

State lemmas with free variables:
lemma app_Nil2[simp]: "xs @ [] = xs"

done

After the proof: Isabelle changes xs to ?xs (internally):
?Xs @ [] = ?xs

Now usable with arbitrary values for ?xs

-p.10

From X to ?X

State lemmas with free variables:
lemma app_Nil2[simp]: "xs @ [] = xs"

done
After the proof: Isabelle changes xs to ?xs (internally):

?Xs @ [] = ?xs
Now usable with arbitrary values for ?xs

Example: rewriting
rev(@a @ []) =rev a

using app_Nil2 with ¢ = {?Xs — a}

-p.10

Term rewriting In Isabelle

-p.11

Basic simplification

Goal: 1.[Py;... ;P,,]=C

apply(simp add: eq; ... eq,)

Basic simplification

Goal: 1.[Py;... ;P,,]=C

apply(simp add: eq; ... eq.,)
Simplify P, ... P,, and C using
lemmas with attribute simp

Basic simplification

Goal: 1.[Py;... ;P,,]=C

apply(simp add: eq; ... eq.,)

Simplify P, ... P,, and C using
lemmas with attribute simp
rules from primrec and datatype

-p.12

Basic simplification

Goal: 1.[Py;... ;P,,]=C

apply(simp add: eq; ... eq.,)

Simplify P, ... P,, and C using
lemmas with attribute simp
rules from primrec and datatype
additional lemmas eq; ... eq,

-p.12

Basic simplification

Goal: 1.[Py;... ;P,,]=C

apply(simp add: eq; ... eq,)

Simplify P, ... P,, and C using
lemmas with attribute simp
rules from primrec and datatype
additional lemmas eq; ... eq,
assumptions P, ... P,,

-p.12

Basic simplification

Goal: 1.[Py;... ;P,,]=C

apply(simp add: eq; ... eq,)

Simplify P, ... P,, and C using
lemmas with attribute simp
rules from primrec and datatype
additional lemmas eq; ... eq,
assumptions P, ... P,,

Variations:
(simp ... del: ...) removes simp-lemmas

add and del are optional

-p.12

auto versus simp

auto acts on all subgoals
simp acts only on subgoal 1
auto applies simp and more

-p.13

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

~p.l4

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(z) = g(z), g(z) = f(z)

~p.l4

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(z) = g(z), g(z) = f(z)

[[Pl...Pn]]:>l:7‘

IS suitable as a simp-rule only
If 1 1s “bigger” than » and each P,

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(z) = g(z), g(z) = f(z)

[[Pl...Pn]]:>l:7‘

IS suitable as a simp-rule only
If 1 1s “bigger” than » and each P,

n<m=— (N <Suc m) = True
Sucn<m=— (n<m)=True

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(z) = g(z), g(z) = f(z)

[[Pl...Pn]]:>l:7‘

IS suitable as a simp-rule only
If 1 1s “bigger” than » and each P,

nN<m=— (n<Sucm)=True YES
Sucn<m=— (n<m)=True NO

How to ignore assumptions

Assumptions sometimes cause problems, e.g.
nontermination. How to exclude them from simp:

- p.15

How to ignore assumptions

Assumptions sometimes cause problems, e.g.
nontermination. How to exclude them from simp:

apply(simp (no_asm_simp) ...)
Simplify only conclusion

- p.15

How to ignore assumptions

Assumptions sometimes cause problems, e.g.
nontermination. How to exclude them from simp:

apply(simp (no_asm_simp) ...)
Simplify only conclusion

apply(simp (no_asm_use) ...)
Simplify but do not use assumptions

- p.15

How to ignore assumptions

Assumptions sometimes cause problems, e.g.

nontermination. How to exclude them from simp:

apply(simp (no_asm_simp) ...)
Simplify only conclusion

apply(simp (no_asm_use) ...)
Simplify but do not use assumptions

apply(simp (no_asm) ...)
Ignore assumptions completely

- p.15

Rewriting with definitions (constdefs)

Definitions do not have the simp attribute.

Rewriting with definitions (constdefs)

Definitions do not have the simp attribute.

They must be used explicitly: (simp add: f def ...)

Extensions of rewriting

-p.17

Local assumptions

Simplification of A — B:
1. Simplify Ato A’
2. Simplify B using A’

Case splitting with simp

P(if A then s else 1)

(A — P(9)) /_(ﬂA — P(1))

Case splitting with simp

P(if A then s else 1)

(A — P(s)) /_(ﬂA — P(1))
Automatic

Case splitting with simp

P(if A then s else 1)

(A — P(s)) /_(ﬂA — P(1))
Automatic

P(caseeof 0 = a| Sucn=Db)

(e=0 — P@) A (Vn.e=Sucn — P(b))

Case splitting with simp

P(if A then s else 1)

(A — P(s)) /_(ﬂA — P(1))
Automatic

P(caseeof 0 = a| Sucn=Db)

(e=0 — P(@)) A (VYn.e=Sucn— P(b))
By hand: (simp split: nat.split)

Case splitting with simp

P(if A then s else 1)

(A — P(s)) /_(ﬂA — P(1))
Automatic

P(caseeof 0 = a| Sucn=Db)

(e=0 — P(@)) A (VYn.e=Sucn— P(b))
By hand: (simp split: nat.split)

Similar for any datatype t: t.split

Ordered rewriting

Problem: 72 + 7y = 7y + 72 does not terminate

-p.20

Ordered rewriting

Problem: 72 + 7y = 7y + 72 does not terminate

Solution: permutative simp-rules are used only if the term
becomes lexicographically smaller.

-p.20

Ordered rewriting

Problem: 72 + 7y = 7y + 72 does not terminate

Solution: permutative simp-rules are used only if the term
becomes lexicographically smaller.

Example: b+a~a+bbutnota-+0bo~ b+ a.

-p.20

Ordered rewriting

Problem: 72 + 7y = 7y + 72 does not terminate

Solution: permutative simp-rules are used only if the term
becomes lexicographically smaller.

Example: b+a~a+bbutnota-+0bo~ b+ a.
For types nat, int etc:
lemmas add_ac sort any sum (+)
lemmas times_ac sort any product (x)

-p.20

Ordered rewriting

Problem: 72 + 7y = 7y + 72 does not terminate

Solution: permutative simp-rules are used only if the term
becomes lexicographically smaller.

Example: b+a~a+bbutnota-+0bo~ b+ a.
For types nat, int etc:
lemmas add_ac sort any sum (+)
lemmas times_ac sort any product (x)

Example: (simp add: add_ac) yields
(b+c)+a~ -~ a+ (b+c)

-p.20

Preprocessing

simp-rules are preprocessed (recursively) for maximal
simplification power:
- A A = False
A— B A— B
ANB A, B
Vo A(x) A(7x)
A A =True

l

A

-p.21

Preprocessing

simp-rules are preprocessed (recursively) for maximal
simplification power:

-A — A= False
A—B — A—B
ANB — A, B
Ve A(x) — A(7x)
A — A=True
Example:

(P—QgqA-NAS

-p.21

Preprocessing

simp-rules are preprocessed (recursively) for maximal
simplification power:

-A — A= False
A—B — A—B
ANB — A, B
Ve A(z) — A(7x)
A — A=True
Example:

P—gA-1NAS — p=q=True,r=False, s=True

-p.21

When everything else fails: Tracing

Set trace mode on/off in Proof General:
Isabelle/lsar — Settings — Trace simplifier
Output in separate buffer:

Proof-General — Buffers — Trace

- p.22

Demo: simp

-p.23

		extcolor {darkblue}{Overview}
		extcolor {darkblue}{Term rewriting means dots }
		extcolor {darkblue}{An example}
		extcolor {darkblue}{More formally}
		extcolor {darkblue}{Extension: conditional rewriting}
		extcolor {darkblue}{Schematic variables}
		extcolor {darkblue}{From x to ?x}
		extcolor {darkblue}{Basic simplification}
		extcolor {darkblue}{auto versus simp}
		extcolor {darkblue}{Termination}
		extcolor {darkblue}{How to ignore assumptions}
		extcolor {darkblue}{Rewriting with definitions (constdefs)}
		extcolor {darkblue}{Local assumptions}
		extcolor {darkblue}{Case splitting with simp}
		extcolor {darkblue}{Ordered rewriting}
		extcolor {darkblue}{Preprocessing}
		extcolor {darkblue}{When everything else fails: Tracing}

