Proof by Simplification

Overview

- Term rewriting foundations
- Term rewriting in Isabelle/HOL
 - Basic simplification
 - Extensions

Term rewriting foundations

Term rewriting means ...

Using equations l = r from left to right

Term rewriting means ...

Using equations l = r from left to right As long as possible

Term rewriting means ...

Using equations l = r from left to right As long as possible

Terminology: equation ~> *rewrite rule*

$$\begin{array}{rcl} 0+n &=& n & (1) \\ \hline & (Suc\ m)+n &=& Suc\ (m+n) & (2) \\ (Suc\ m \leq Suc\ n) &=& (m \leq n) & (3) \\ & (0 \leq m) &=& True & (4) \end{array}$$

$$\begin{array}{rcl} 0+n &=& n & (1) \\ \hline \textbf{Equations:} & (Suc \ m)+n &=& Suc \ (m+n) & (2) \\ (Suc \ m \leq Suc \ n) &=& (m \leq n) & (3) \\ (0 \leq m) &=& True & (4) \end{array}$$

$$0 + Suc \ 0 \ \leq \ Suc \ 0 + x$$

Rewriting:

$$\begin{array}{rcl} 0+n&=&n&(1)\\ \mbox{Equations:}&(Suc\ m)+n&=&Suc\ (m+n)&(2)\\ (Suc\ m\leq Suc\ n)&=&(m\leq n)&(3)\\ (0\leq m)&=&True&(4) \end{array}$$

$$\begin{array}{rcl} 0 + Suc \ 0 &\leq & Suc \ 0 + x & \stackrel{(1)}{=} \\ Suc \ 0 &\leq & Suc \ 0 + x \end{array}$$

Rewriting:

Equations:

$$\begin{array}{rcl}
0+n &=& n & (1) \\
(Suc m)+n &=& Suc (m+n) & (2) \\
(Suc m \leq Suc n) &=& (m \leq n) & (3) \\
(0 \leq m) &=& True & (4)
\end{array}$$

$$\begin{array}{rcl} 0 + Suc \ 0 &\leq & Suc \ 0 + x & \stackrel{(1)}{=} \\ Suc \ 0 &\leq & Suc \ 0 + x & \stackrel{(2)}{=} \\ \end{array}$$
Rewriting:
$$\begin{array}{rcl} Suc \ 0 &\leq & Suc \ (0 + x) \end{array}$$

Ľ

$$\begin{array}{rcl} 0+n &=& n & (1) \\ \text{Equations:} & (Suc \ m)+n &=& Suc \ (m+n) & (2) \\ (Suc \ m \leq Suc \ n) &=& (m \leq n) & (3) \\ (0 \leq m) &=& True & (4) \end{array}$$

$$\begin{array}{rcl} 0 + Suc \ 0 &\leq & Suc \ 0 + x & \stackrel{(1)}{=} \\ Suc \ 0 &\leq & Suc \ 0 + x & \stackrel{(2)}{=} \\ Suc \ 0 &\leq & Suc \ (0 + x) & \stackrel{(3)}{=} \\ 0 &\leq & 0 + x \end{array}$$

Rewriting:

$$\begin{array}{rcl} 0+n &=& n & (1) \\ \text{Equations:} & (Suc \ m)+n &=& Suc \ (m+n) & (2) \\ (Suc \ m \leq Suc \ n) &=& (m \leq n) & (3) \\ (0 \leq m) &=& True & (4) \end{array}$$

$$\begin{array}{rcl} 0 + Suc \ 0 &\leq & Suc \ 0 + x & \stackrel{(1)}{=} \\ Suc \ 0 &\leq & Suc \ 0 + x & \stackrel{(2)}{=} \\ Suc \ 0 &\leq & Suc \ (0 + x) & \stackrel{(3)}{=} \\ 0 &\leq & 0 + x & \stackrel{(4)}{=} \\ True \end{array}$$

Rewriting:

substitution = mapping from variables to terms

substitution = mapping from variables to terms

• l = r is *applicable* to term t[s]if there is a substitution σ such that $\sigma(l) = s$

substitution = mapping from variables to terms

- l = r is *applicable* to term t[s]if there is a substitution σ such that $\sigma(l) = s$
- **Result:** $t[\sigma(r)]$

substitution = mapping from variables to terms

- l = r is *applicable* to term t[s]if there is a substitution σ such that $\sigma(l) = s$
- **Result:** $t[\sigma(r)]$
- Note: $t[s] = t[\sigma(r)]$

substitution = mapping from variables to terms

- l = r is *applicable* to term t[s]if there is a substitution σ such that $\sigma(l) = s$
- **Result:** $t[\sigma(r)]$
- Note: $t[s] = t[\sigma(r)]$

Example:

Equation: 0 + n = n

Term: a + (0 + (b + c))

substitution = mapping from variables to terms

- l = r is *applicable* to term t[s]if there is a substitution σ such that $\sigma(l) = s$
- **Result:** $t[\sigma(r)]$
- Note: $t[s] = t[\sigma(r)]$

Example:

Equation: 0 + n = nTerm: a + (0 + (b + c)) $\sigma = \{n \mapsto b + c\}$

substitution = mapping from variables to terms

- l = r is *applicable* to term t[s]if there is a substitution σ such that $\sigma(l) = s$
- **Result:** $t[\sigma(r)]$
- Note: $t[s] = t[\sigma(r)]$

Example:

Equation: 0 + n = nTerm: a + (0 + (b + c)) $\sigma = \{n \mapsto b + c\}$ Result: a + (b + c)

Extension: conditional rewriting

Rewrite rules can be conditional:

$$\llbracket P_1 \dots P_n \rrbracket \Longrightarrow l = r$$

Extension: conditional rewriting

Rewrite rules can be conditional:

$$\llbracket P_1 \dots P_n \rrbracket \Longrightarrow l = r$$

is applicable to term t[s] with σ if

- $\sigma(l) = s$ and
- $\sigma(P_1), \ldots, \sigma(P_n)$ are provable (again by rewriting).

Interlude: Variables in Isabelle

Three kinds of variables:

- bound: $\forall x. x = x$
- free: x = x

Three kinds of variables:

- bound: $\forall x. x = x$
- free: *x* = *x*
- schematic: ?x = ?x ("unknown")

Three kinds of variables:

- bound: $\forall x. x = x$
- free: *x* = *x*
- schematic: ?x = ?x ("unknown")

Can be mixed: $\forall b. f ?a y = b$

Three kinds of variables:

- bound: $\forall x. x = x$
- free: *x* = *x*
- schematic: ?x = ?x ("unknown")

Can be mixed: $\forall b. f ?a y = b$

• Logically: free = schematic

Three kinds of variables:

- bound: $\forall x. x = x$
- free: *x* = *x*
- schematic: ?x = ?x ("unknown")

Can be mixed: $\forall b. f ?a y = b$

- Logically: free = schematic
- Operationally:
 - free variables are fixed
 - schematic variables are instantiated by substitutions

State lemmas with free variables:

lemma *app_Nil2[simp]:* "xs @ [] = xs"

State lemmas with free variables:

```
lemma app_Nil2[simp]: "xs @ [] = xs"
```

-

done

State lemmas with free variables:

```
lemma app_Nil2[simp]: "xs @ [] = xs"
```

```
done
```

- After the proof: Isabelle changes xs to ?xs (internally): ?xs @ [] = ?xs
- Now usable with arbitrary values for ?xs

State lemmas with free variables:

```
lemma app_Nil2[simp]: "xs @ [] = xs"
```

done

After the proof: Isabelle changes *xs* to *?xs* (internally): *?xs* @ [] = *?xs* Now usable with arbitrary values for *?xs*

Example: rewriting

```
rev(a @ []) = rev a
```

using *app_Nil2* with $\sigma = \{ ?xs \mapsto a \}$

Term rewriting in Isabelle

Goal: 1. $\llbracket P_1; \ldots; P_m \rrbracket \Longrightarrow C$

apply(simp add: $eq_1 \dots eq_n$)

- Goal: 1. $\llbracket P_1; \ldots; P_m \rrbracket \Longrightarrow C$
- apply(simp add: $eq_1 \dots eq_n$)
- Simplify $P_1 \ldots P_m$ and C using
 - lemmas with attribute *simp*

- Goal: 1. $\llbracket P_1; \ldots; P_m \rrbracket \Longrightarrow C$
- apply(simp add: $eq_1 \dots eq_n$)
- Simplify $P_1 \ldots P_m$ and C using
 - lemmas with attribute simp
 - rules from primrec and datatype

- Goal: 1. $\llbracket P_1; \ldots; P_m \rrbracket \Longrightarrow C$
- apply(simp add: $eq_1 \dots eq_n$)
- Simplify $P_1 \ldots P_m$ and C using
 - lemmas with attribute simp
 - rules from primrec and datatype
 - additional lemmas $eq_1 \dots eq_n$

- Goal: 1. $\llbracket P_1; \ldots; P_m \rrbracket \Longrightarrow C$
- apply(simp add: $eq_1 \dots eq_n$)
- Simplify $P_1 \ldots P_m$ and C using
 - lemmas with attribute simp
 - rules from primrec and datatype
 - additional lemmas $eq_1 \dots eq_n$
 - assumptions $P_1 \dots P_m$

- Goal: 1. $\llbracket P_1; \ldots; P_m \rrbracket \Longrightarrow C$
- apply(simp add: $eq_1 \dots eq_n$)
- Simplify $P_1 \ldots P_m$ and C using
 - lemmas with attribute simp
 - rules from primrec and datatype
 - additional lemmas $eq_1 \dots eq_n$
 - assumptions $P_1 \dots P_m$

Variations:

- (simp ... del: ...) removes simp-lemmas
- add and del are optional

auto versus simp

- *auto* acts on all subgoals
- simp acts only on subgoal 1
- auto applies simp and more

Simplification may not terminate. Isabelle uses *simp*-rules (almost) blindly from left to right.

Simplification may not terminate. Isabelle uses *simp*-rules (almost) blindly from left to right. Example: f(x) = g(x), g(x) = f(x)

Simplification may not terminate. Isabelle uses *simp*-rules (almost) blindly from left to right. Example: f(x) = g(x), g(x) = f(x)

$$\llbracket P_1 \dots P_n \rrbracket \Longrightarrow l = r$$

is suitable as a *simp*-rule only if l is "bigger" than r and each P_i

Simplification may not terminate. Isabelle uses *simp*-rules (almost) blindly from left to right. Example: f(x) = g(x), g(x) = f(x)

$$\llbracket P_1 \dots P_n \rrbracket \Longrightarrow l = r$$

is suitable as a *simp*-rule only if l is "bigger" than r and each P_i

$$n < m \implies (n < Suc m) = True$$

Suc $n < m \implies (n < m) = True$

Simplification may not terminate. Isabelle uses *simp*-rules (almost) blindly from left to right. Example: f(x) = g(x), g(x) = f(x)

$$\llbracket P_1 \dots P_n \rrbracket \Longrightarrow l = r$$

is suitable as a *simp*-rule only if l is "bigger" than r and each P_i

$$n < m \implies (n < Suc m) = True \quad YES$$

Suc $n < m \implies (n < m) = True \quad NO$

How to ignore assumptions

Assumptions sometimes cause problems, e.g. nontermination. How to exclude them from *simp*:

How to ignore assumptions

Assumptions sometimes cause problems, e.g. nontermination. How to exclude them from *simp*:

apply(simp (no_asm_simp) ...)
Simplify only conclusion

Assumptions sometimes cause problems, e.g. nontermination. How to exclude them from *simp*:

apply(simp (no_asm_simp) ...)
Simplify only conclusion
apply(simp (no_asm_use) ...)
Simplify but do not use assumptions

Assumptions sometimes cause problems, e.g. nontermination. How to exclude them from *simp*:

apply(simp (no_asm_simp) ...)
Simplify only conclusion

apply(simp (no_asm_use) ...)
Simplify but do not use assumptions

apply(simp (no_asm) ...)
Ignore assumptions completely

Rewriting with definitions (constdefs)

Definitions do not have the *simp* attribute.

Rewriting with definitions (constdefs)

Definitions do not have the *simp* attribute.

They must be used explicitly: (simp add: f_def ...)

Extensions of rewriting

Local assumptions

- Simplification of $A \longrightarrow B$:
 - 1. Simplify A to A'
 - **2.** Simplify B using A'

$$P(if A then s else t) = \\ (A \longrightarrow P(s)) \land (\neg A \longrightarrow P(t))$$

Automatic

$$P(if A then s else t) = \\ (A \longrightarrow P(s)) \land (\neg A \longrightarrow P(t))$$

Automatic

$$\begin{array}{l} P(\textit{case e of } 0 \Rightarrow a \mid \textit{Suc } n \Rightarrow b) \\ = \\ (e = 0 \longrightarrow P(a)) \land (\forall n. \ e = \textit{Suc } n \longrightarrow P(b)) \end{array}$$

$$P(if A then s else t) = \\ (A \longrightarrow P(s)) \land (\neg A \longrightarrow P(t))$$

Automatic

$$\begin{array}{l} P(\textit{case e of } 0 \Rightarrow a \mid \textit{Suc } n \Rightarrow b) \\ = \\ (e = 0 \longrightarrow P(a)) \land (\forall n. \ e = \textit{Suc } n \longrightarrow P(b)) \end{array}$$

By hand: (simp split: nat.split)

$$P(if A then s else t) = \\ (A \longrightarrow P(s)) \land (\neg A \longrightarrow P(t))$$

Automatic

$$\begin{array}{l} P(\textit{case e of } 0 \Rightarrow a \mid \textit{Suc } n \Rightarrow b) \\ = \\ (e = 0 \longrightarrow P(a)) \land (\forall n. \ e = \textit{Suc } n \longrightarrow P(b)) \end{array}$$

By hand: (simp split: nat.split)

Similar for any datatype *t*: *t.split*

Problem: ?x + ?y = ?y + ?x does not terminate

- Problem: ?x + ?y = ?y + ?x does not terminate
- Solution: permutative *simp*-rules are used only if the term becomes lexicographically smaller.

- Problem: ?x + ?y = ?y + ?x does not terminate
- Solution: permutative *simp*-rules are used only if the term becomes lexicographically smaller.
- Example: $b + a \rightarrow a + b$ but not $a + b \rightarrow b + a$.

- Problem: ?x + ?y = ?y + ?x does not terminate
- Solution: permutative *simp*-rules are used only if the term becomes lexicographically smaller.
- Example: $b + a \rightarrow a + b$ but not $a + b \rightarrow b + a$.
- For types *nat*, *int* etc:
 - lemmas add_ac sort any sum (+)
 - lemmas *times_ac* sort any product (*)

- Problem: ?x + ?y = ?y + ?x does not terminate
- Solution: permutative *simp*-rules are used only if the term becomes lexicographically smaller.
- Example: $b + a \rightarrow a + b$ but not $a + b \rightarrow b + a$.
- For types *nat*, *int* etc:
 - lemmas add_ac sort any sum (+)
 - lemmas *times_ac* sort any product (*)
- Example: (simp add: add_ac) yields

$$(b+c) + a \rightsquigarrow \cdots \rightsquigarrow a + (b+c)$$

Preprocessing

simp-rules are preprocessed (recursively) for maximal simplification power:

$$\neg A \quad \mapsto \quad A = False$$
$$A \longrightarrow B \quad \mapsto \quad A \Longrightarrow B$$
$$A \land B \quad \mapsto \quad A, B$$
$$\forall x.A(x) \quad \mapsto \quad A(?x)$$
$$A \quad \mapsto \quad A = True$$

Preprocessing

simp-rules are preprocessed (recursively) for maximal simplification power:

$$\neg A \quad \mapsto \quad A = False$$
$$A \longrightarrow B \quad \mapsto \quad A \Longrightarrow B$$
$$A \land B \quad \mapsto \quad A, B$$
$$\forall x.A(x) \quad \mapsto \quad A(?x)$$
$$A \quad \mapsto \quad A = True$$

Example:

 $(p \longrightarrow q \land \neg r) \land s \longmapsto$

Preprocessing

simp-rules are preprocessed (recursively) for maximal simplification power:

 $\neg A \quad \mapsto \quad A = False$ $A \longrightarrow B \quad \mapsto \quad A \Longrightarrow B$ $A \land B \quad \mapsto \quad A, B$ $\forall x.A(x) \quad \mapsto \quad A(?x)$ $A \quad \mapsto \quad A = True$

Example:

 $(p \longrightarrow q \land \neg r) \land s \longrightarrow p \Longrightarrow q = True, r = False, s = True$

When everything else fails: Tracing

Set trace mode on/off in Proof General:

Isabelle/Isar \rightarrow Settings \rightarrow Trace simplifier

Output in separate buffer:

 $\textbf{Proof-General} \rightarrow \textbf{Buffers} \rightarrow \textbf{Trace}$

Demo: simp