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Overview

• Term rewriting foundations
• Term rewriting in Isabelle/HOL

• Basic simplification
• Extensions
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Term rewriting foundations
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Term rewriting means . . .

Using equations l = r from left to right

As long as possible

Terminology: equation ; rewrite rule
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An example

Equations:

0 + n = n (1)

(Suc m) + n = Suc (m + n) (2)

(Suc m ≤ Suc n) = (m ≤ n) (3)

(0 ≤ m) = True (4)

Rewriting:

0 + Suc 0 ≤ Suc 0 + x
(1)
=

Suc 0 ≤ Suc 0 + x
(2)
=

Suc 0 ≤ Suc (0 + x)
(3)
=

0 ≤ 0 + x
(4)
=

True
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More formally

substitution = mapping from variables to terms

• l = r is applicable to term t[s]

if there is a substitution σ such that σ(l) = s

• Result: t[σ(r)]

• Note: t[s] = t[σ(r)]

Example:

Equation: 0 + n = n

Term: a + (0 + (b + c))

σ = {n 7→ b + c}

Result: a + (b + c)
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Extension: conditional rewriting

Rewrite rules can be conditional:

[[P1 . . . Pn]] =⇒ l = r

is applicable to term t[s] with σ if
• σ(l) = s and
• σ(P1), . . . , σ(Pn) are provable (again by rewriting).
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Interlude: Variables in Isabelle
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Schematic variables

Three kinds of variables:
• bound: ∀ x. x = x
• free: x = x

• schematic: ?x = ?x (“unknown”)

Can be mixed: ∀b. f ?a y = b

• Logically: free = schematic
• Operationally:

• free variables are fixed
• schematic variables are instantiated by substitutions
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From x to ?x

State lemmas with free variables:

lemma app_Nil2[simp]: "xs @ [] = xs"

...
done

After the proof: Isabelle changes xs to ?xs (internally):
?xs @ [] = ?xs

Now usable with arbitrary values for ?xs

Example: rewriting
rev(a @ []) = rev a

using app_Nil2 with σ = {?xs 7→ a}
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Term rewriting in Isabelle
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Basic simplification

Goal: 1. [[ P1; . . . ; Pm ]] =⇒ C

apply(simp add: eq1 . . . eqn)

Simplify P1 . . . Pm and C using
• lemmas with attribute simp
• rules from primrec and datatype

• additional lemmas eq1 . . . eqn

• assumptions P1 . . . Pm

Variations:
• (simp . . . del: . . . ) removes simp-lemmas
• add and del are optional
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auto versus simp

• auto acts on all subgoals
• simp acts only on subgoal 1
• auto applies simp and more
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Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(x) = g(x), g(x) = f(x)

[[P1 . . . Pn]] =⇒ l = r

is suitable as a simp-rule only
if l is “bigger” than r and each Pi

n < m =⇒ (n < Suc m) = True YES
Suc n < m =⇒ (n < m) = True NO

– p.14
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How to ignore assumptions

Assumptions sometimes cause problems, e.g.
nontermination. How to exclude them from simp:

apply(simp (no_asm_simp) . . . )
Simplify only conclusion

apply(simp (no_asm_use) . . . )
Simplify but do not use assumptions

apply(simp (no_asm) . . . )
Ignore assumptions completely
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Rewriting with definitions (constdefs)

Definitions do not have the simp attribute.

They must be used explicitly: (simp add: f_def . . . )
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Extensions of rewriting
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Local assumptions

Simplification of A −→ B:

1. Simplify A to A′

2. Simplify B using A′
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Case splitting with simp

P(if A then s else t)
=

(A −→ P(s)) ∧ (¬A −→ P(t))

Automatic

P(case e of 0 ⇒ a | Suc n ⇒ b)
=

(e = 0 −→ P(a)) ∧ (∀n. e = Suc n −→ P(b))

By hand: (simp split: nat.split)

Similar for any datatype t : t.split
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Ordered rewriting

Problem: ?x + ?y = ?y + ?x does not terminate

Solution: permutative simp-rules are used only if the term
becomes lexicographically smaller.

Example: b + a ; a + b but not a + b ; b + a.

For types nat, int etc:
• lemmas add_ac sort any sum (+)
• lemmas times_ac sort any product (∗)

Example: (simp add: add_ac) yields

(b + c) + a ; · · · ; a + (b + c)
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Preprocessing

simp-rules are preprocessed (recursively) for maximal
simplification power:

¬A 7→ A = False

A −→ B 7→ A =⇒ B

A ∧ B 7→ A, B

∀x.A(x) 7→ A(?x)

A 7→ A = True

Example:

(p −→ q ∧ ¬ r) ∧ s 7→ p =⇒ q = True, r = False, s = True

– p.21
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When everything else fails: Tracing

Set trace mode on/off in Proof General:

Isabelle/Isar → Settings → Trace simplifier

Output in separate buffer:

Proof-General → Buffers → Trace
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Demo: simp
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