An introduction to recursion and induction

-pi

A recursive datatype: toy lists

datatype 'a list = Nil | Cons ’a "a list"
Nil: empty list

Cons x xs: head X :: 'a, tail xs :: 'a list

-p.2

A recursive datatype: toy lists

datatype 'a list = Nil | Cons ’a "a list"
Nil: empty list
Cons x xs: head x :: ’'a, tail xs :: ’a list

A toy list: Cons False (Cons True Nil)

-p.2

A recursive datatype: toy lists

datatype 'a list = Nil | Cons ’a "a list"
Nil: empty list

Cons x xs: head X :: ’'a, tail xs :: 'a list
A toy list: Cons False (Cons True Nil)

Predefined lists: [False, True]

-p.2

Concrete syntax

In . t hy files:
Types and formulae need to be inclosed in "..."

-p.3

Concrete syntax

In . t hy files:
Types and formulae need to be inclosed in "..."

Except for single identifiers, e.g. 'a

-p.3

Concrete syntax

In . t hy files:
Types and formulae need to be inclosed in "..."

Except for single identifiers, e.g. 'a

"..." normally not shown on slides

-p.3

Structural induction on lists

P xs holds for all lists xs if

—p.4

Structural induction on lists

P xs holds for all lists xs if
P Nil

—p.4

Structural induction on lists

P xs holds for all lists xs if
P Nil
and for arbitrary x and xs, P xs implies P (Cons X xs)

—p.4

Declaration

consts app ::

A recursive function: append

alist = 'alist = 'a list"

-p.5

A recursive function: append

Declaration

consts app :: "alist = ’alist = ’a list"
and definition by primitive recursion:
primrec

app Nilys =?
app (Cons x xs) ys = ??

-p.5

A recursive function: append

Declaration

consts app :: "alist = 'alist = ’a list"
and definition by primitive recursion:
primrec

app Nilys =?

app (Cons x xs) ys = ??

1 rule per constructor
Recursive calls must drop the constructor — Termination

-p.5

Demo: append and reverse

-p.6

Proofs

General schema:

lemma name.

apply (...)
apply (...)
done

If the lemma is suitable as a simplification rule:

lemma name[SI np]j :

—-p.7

Proof methods

Structural induction

Format: (induct x)
X must be a free variable in the first subgoal.
The type of x must be a datatype.

Effect. generates 1 new subgoal per constructor

Simplification and a bit of logic
Format: auto

Effect: tries to solve as many subgoals as possible
using simplification and basic logical reasoning.

-p.8

Top down proofs

sorry
“completes” any proof.

Suitable for top down developments:
Assume lemmas first, prove them later.

Only allowed for interactive proof!

-p.9

		extcolor {darkblue}{A recursive datatype: toy lists}
		extcolor {darkblue}{Concrete syntax}
		extcolor {darkblue}{Structural induction on lists}
		extcolor {darkblue}{A recursive function: append}
		extcolor {darkblue}{Proofs}
		extcolor {darkblue}{Proof methods}
		extcolor {darkblue}{Top down proofs}

