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Abstract. At first sight, real-time and asynchronous message passing
like in SDL and ROOM seem to be incompatible. Indeed these languages
fail to model real-time constraints accurately. In this paper, we show how
to reconcile real-time with asynchronous message passing, by using an
assumption which is supported by every mailing system throughout the
world, namely that messages are time-stamped with their sending and
arrival time. This assumption allows us to develop a formalism which is
adequate to model and to specify real-time constraints. The proposed
formalism is shown at work on a small real-time example.

1 Introduction

Asynchronous message passing has gained a lot of popularity in the industrial
community. Two of the most prominent specification and description languages
for real-time systems use it as their basic communication and synchronization
scheme between processes: the ITU-T specification and description language SDL
[OFMP*94, IT93] and the ObjecTime specification and description language
ROOM [SGW94].

Basically, the behavior of a system in SDL or ROOM is given as a set of asyn-
chronously communicating extended finite state machines (EFSM). A signal in-
stance, i.e., a message, is created when an EFSM executes an output and ceases
to exist when the receiving EFSM consumes the signal in an input. Commu-
nication channels convey the signal instance from the sender to the receiver.
When the signal arrives, it is kept in the input port of the receiver, which is
an unbounded FIFO queue, until the receiver consumes it. The virtue of this
communication scheme is the loose coupling between system parts: a sender is
never blocked because a receiver is not ready to communicate.

In order to express real-time constraints, both SDL and ROOM allow to access
the global, actual time and to set and reset timers. A timer is a stopwatch which
is set with an expiration time. The expiration of the timer is then signaled to
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the process as an ordinary input signal. When a timer is no longer needed, it
can be reset before its expiration, to avoid spurious expirations.

Unfortunately, these timing facilities are not precisely defined in the SDL and
ROOM semantics [Hin96, Leu95, BB91, SGW94] and therefore implementation
dependent. Practical experience has shown that the SDL timing facilities behave
well only if the tolerance intervals are at least 100 times the average instruction
time of the CPU used for the implementation [OFMP*94]. Moreover, these
timing facilities are not always expressive enough. In order to understand why
this is the case, let us examine a small fragment of a telephone protocol.

“ After the caller has lifted the phone receiver, he must receive a dial
tone within 0.1s.”

Assuming that no delay occurs on the communication lines, this protocol can be
expressed very intuitively by using a timed variant of message sequence charts,
as shown in Figure 1, left, where offH is the abbreviation for off-hook, dtB is
the abbreviation for dial-tone-begin and a,b are points in time (see [IT96] for
the MSC standard).

Caler TelHandler
L ] L ]
a offH
b dtB b-a < 0.1s
[ [

Fig. 1. MSC and EFSM for the protocol fragment

This requirement is neither expressible in SDL nor in ROOM. The best one can
do is to write the EFSM given in SDL-notation in Figure 1, right. It consists
of a start symbol, the control states idle and waitF, and a transition labeled
by the input offH and the output dtB. This EFSM neither guarantees that the
transition is taken synchronously with the generation of the of fH message nor
that the transition takes less than 0.1s. The transition can be delayed, even if the
dtB message was already queued in the input port. Moreover, it is unknown how
long does it take to produce the output dtB. Note that timers are not helpful in
this case, since they can only be used to enforce a reaction if a signal does not
arrive within a given time interval.

One of the most successful formal models for specifying and verifying real-time
systems are timed automata [AD94, HNSY92]. The formalism of timed automata



generalizes finite state machines over infinite strings to generate (or accept) in-
finite sequences of states which are additionally constrained by timing require-
ments.

A timed automaton operates with finite control — a finite set of locations, a finite
set of propositions and a finite set of real-valued clocks. All clocks proceed at
the same rate and measure the amount of time that has elapsed since they were
reset. Each edge of the automaton may reset some of the clocks and assign new
values to a set of propositional variables. Each edge and each location may put
certain constraints on the values of the clocks and propositions corresponding to
that location.

Using a syntax similar to the one given in [HNSY92], the caller and the telephone
handler automata can be expressed as shown in Figure 2. Suppose the channels
i and o and the timer x are modeled with shared variables, and that composition
is done by interleaving. If initially i # offH, then only the caller automaton can
proceed by “sending” offH along i simultaneously with reseting the timer x. The
telephone handler is then able to make its first transition. The second transition
of the telephone handler can than be taken at any moment such that x < 0.1s
with the effect of “sending” dtB.

@ = OffH, reset(x) >@

i = offH x<0.1s — o0:=dtB
(s1) =) =)

Fig. 2. The timed automata solution

TelHandler

The above timed-automata solution uses shared variables both for communica-
tion and for time synchronization. Although shared variables are appropriate
for single-processor systems, they are unnatural in the context of distributed
systems. Moreover, the timed automata approach is not modular, since timed
automata may constrain their environment, as we will show in the next section.

Note that the sharing of the timer variable x between the caller and the telephone
handler implies that the receiver knows when the of fH message has been sent.
In the following, we use essentially the same idea, but in a modular way, and
within a message-passing communication paradigm. In the solution we propose,
each message is time-stamped both with the sending and the arrival time, as
this is a common practice of any mailing system. To simplify the semantics (but
without loss of generality because the communication medium can be modeled
again as a component) we assume instantaneous delivery, i.e., the sending and



the arrival time are considered to be the same.

As in SDL and ROOM, we describe the behavior of processes with extended
finite-state machines which we call timed state transition diagrams (TSTDs). We
also assume asynchronous communication and the presence of a timer variable
now containing at each moment the actual time. However, in contrast to SDL
and ROOM we allow to access the arrival time of a message by using time-
stamped input patterns. For example, the pattern i?7offH@t matches the first
offH message in the input port i, and updates the variable t with the arrival
time of this message. This variable can be used in conjunction with now to guard
a transition, as in now - t < 0.1s. When the transition is taken, it takes place
instantaneously.

Using our approach, the timing requirement of the telephone protocol fragment
can be expressed with only one TSTD — the telephone handler — as shown in
Figure 3.

{now - t < 0.1} i2offH@t / o'dtB

© =)

Fig. 3. Our solution

The input and the output patterns are separated by a slash, and written in a
syntax inspired by CSP [Hoa85]. The guard (or precondition) is written within
curly brackets before the input/output patterns. Assignments to the state vari-
ables can be written between curly brackets after the input/output patterns (the
postcondition).

Intuitively, a component specified by this TSTD behaves as follows. If the com-
ponent is in the control state s1, the first message on the port i is offH, and
the arrival time t of this message is such that now-t<0. 1s, then the component
has the choices either to perform the transition immediately, or to perform it at
any later moment now’ which also satisfies the condition now’-t<0. 1s.

To express timeouts and priorities between transitions, we also allow to test
for the absence of any message in a given port. For example, the input pattern
i76 is satisfied if no message is in the input port i at time moment now. The
input pattern i?a, j?70 is satisfied if at time point now the “prioritized” port
j is empty whereas the first message in the port i is a. Hence, if a transition is
labeled with i7a, j?7& and another with j?b, and both have the same source
control node, then the second transition has a higher priority.

If a transition has no pattern for an input port, then no message is discarded
from that port in this transition. Similarly, if a transition has no pattern for an
output port, then no message is sent on this output port.



If no transition can be taken in a given state, then the behavior of the compo-
nent is completely unspecified (“chaotic”). This implies that we have to handle
undesired input explicitly. This is in contrast to SDL, where input messages
without a matching transition are implicitly ignored. Although at first sight the
SDL approach might seem more convenient, this implicit assumption often leads
to subtle errors in SDL specifications.

Note that time stamping the input can be avoided, if the input transition of the
receiver is synchronous with the output transition of the sender. This assumption
however, would change the communication paradigm. In contrast, our time-
stamped model is fully asynchronous and contains the SDL and the ROOM
models as a particular case, in which all timing constraints equal true. This
allows for a modular specification formalism along the lines of [BDD93, BS97,
GS96], and for a stepwise development process, where timing constraints are
omitted in the first step [GKRB96] and introduced gradually in the next steps.
The above would not hold, however, if we would change our model such that
transitions are taken as soon as they become enabled. Moreover, in this case one
would also have to introduce prophecies in order to express an arbitrary delay
within a given interval.

Our paper is organized as follows. In Section 2, we intuitively introduce timed
state transition diagrams by specifying a simplified telephone handler. In Section
3 we introduce the abstract syntax of timed state transition diagrams. Section
4 defines the semantics of TSTDs in terms of timed input-/output relations.
Section 5 is concerned with the syntax and the semantics of input- and output
patterns. In section 6 we discuss the composition of TSTDs. Finally, in section
7 we draw some conclusions.

2 Dialing a Telephone Number

In order to get more intuition about our model and to show how we deal with
timeouts, let us formalize the behavior of a telephone handler, which controls the
dialing of a four-digit telephone number. The telephone handler has to satisfy
the following requirements:

1. After the caller has lifted the phone receiver, he must receive a dial tone
within 0.1s

2. If the caller does not respect the following timing requirements, then the
telephone handler should return a timeout tone and disconnect the line:

(a) After receiving the dial tone, the caller must dial the first digit within
30s.

(b) After a digit has been dialed, the next digit must be dialed within 20s.

(c) After the caller has lifted the phone receiver, he must dial a complete
number within 60s



The specification of the telephone handler is given in Figure 4.

tstd TelHandler = {

input i : Tell
output o : TelO
attributes n, c, dt, nt : Nat
transitions
onH; onH,
next
: offH ——  first \(Jq done :
%@MF = waitN > connecting
onH, toutF toutN
| transition | precondition | input | output | postcondition |
| offH | now —t < 0.1s | i7offHQ ¢ | oldtB | dt’ = nt’ = now |
n =aA
first t —dt < 30s i?2d(a)@t |oldtE | ¢ =1A
dt’ = now
t—dt < 20s A n=nx104+aA
next t—nt < 60s A ird(a) @t c=c+1A
c<3 dt’ = now
t—dt < 20s A
done t—nt < 60s A i?d(a) @t n=n=x*10+a
c=3
onH; now —t < 0.1s i?7onHQ¢t | oldtE
t—dt < 20s A .
. ?
onH- t—nt < 60s i?7onH Q¢
onHj3 i?7onH oldcE
toutF now — dt = 30s i’e oldcB
toutN now —dt = 20s v i70 oldcB
now — nt = 60s

Fig. 4. The telephone handler



The specification consists of an interface declaration part, an attribute decla-
ration part and a state transition diagram. The interface declaration lists the
names of the input and the output ports together with their types. The at-
tributes are defined by their name, type, and (optionally) an initial value. The
telephone handler has an input port i : TelI and an output port o : TelO, where
the message sets TelI and TelO are defined as follows:

data Tell
data TelD

offH | onH | d(Digit)
dtB | dtE | dcB | dcE

The above types define the set of messages allowed to flow between the caller and
the telephone handler. Each message consists of a message name and optional
data. For example, of fH contains no data while d(8) contains both the message
name d(igit) and the data value 8 € Digit, where Digit is assumed to range
between 0 to 9. The bar notation is used to separate alternatives. It is similar
to data-type declarations as they are used in functional languages like ML (see
[Pau9l]).

The abbreviations onH, dtE, dcB and dcE are used for on-hook, dial-tone-end,
disconnect-begin and disconnect-end respectively.

The attribute n is used to store the telephone number, the attribute c is used
to count the number of digits already received, the attribute nt is used to save
the arrival time of the first digit and the attribute dt is used to save the arrival
time of the previous digit.

To enhance the readability of the state transition diagrams we allow to define the
transitions separately in tabular form and to refer them by their name. A good
practice is to use for the transition’s name the name (or a common attribute)
of the transition’s input message(s). For example, the transition offH is defined
as follows: if the component is in the control state idle and the first message
in its input port i is offH, then it sends the message dtB along its output
port o provided that offH was received at a time t such that now - t <0.1s.
Additionally, the current time is saved in dt and nt. This is needed to raise a
timeout if the first digit is not dialed within 30s or if the number is not dialed
within 60s. The other transitions are defined analogously.

Note that if no message has arrived on the port i, then a timeout transition takes
place exactly at the moment when the time limit has expired. Contrast this with
SDL and ROOM, where a timeout message is queued as an ordinary message
after the timeout has expired. As a consequence, it can be only guaranteed that
timeout processing does not happen before the time limit has expired. Contrast
this also with timed automata, where the input is not inspected in the timeout
transitions. This is not necessary in that approach, because the correct traces of
the environment and the automaton are generated together.

Since we use transition diagrams primarily for specification purpose, the precon-
ditions and the postconditions are allowed to be arbitrary predicates. However,
often one might be interested in a specification technique which can be used for



validation purposes or for direct code generation. In such cases, one is free to use
some restricted form of predicates, such as equations or executable statements of
some programming language. Let us now give the formal definition of the state
transition diagrams introduced so far.

3 Timed State Transition Diagrams

A real-time component described by a timed state transition diagram commu-
nicates with its environment along typed input and output ports. They define
the interface of the component and are given formally by a port signature.

Definition 1. (Port signature) Let I and O be disjoint sets of input and respec-
tively output port names. Let D be a mapping assigning to each port ¢ € 1 UO
a type D.. A port signature is a tuple X' = (1,0, D).

Let ¢ denote the time-stamped sequence of message which is expected to arrive
along the input interface before a transition is taken. Since the input ports
are named and typed, ¢ is a record (or named tuple), and for each i € I, p.i
represents the sequence of messages which is expected to arrive along the port
i. Formally?, ¢ is an element of the named product IT;c;(D; x N)*, where N
denotes the domain of time stamps. In the following, we denote this set of input
actions by ActIE. Similary, let ¥ denote the sequence of messages which are sent
along the output interface when a transition is taken. Since the output ports are
named and typed and the output sequences are sent on all ports in the same
time unit, ¢ is an element of the set of output actions Actg = Il,coD}. This
powerful concept of input and output actions often allows us, in contrast to SDL,
to eliminate trivial intermediate states and transitions.

Definition 2. (State Transition Diagram) A state transition diagram is a tuple
D= (X,S,G,v,n) where:

Y =(I,0,D) is a port signature.

S = I,c4D, defines the data state space of D. Each a € A is an attribute a
with associated type D,. One special, read only attribute now € N contains
at each moment the current time.

G =(N,E C N x N,ng) is the control graph of D. Each node n € N defines a
control state and each edge (n1,n2) € E defines a control transition. ng € N
is the initial control node.

veN — (S — B) is the node labeling of D. It marks each control state n € N
with a predicate v, giving the associated data states.

% Given an arbitrary set M, we denote by M* the set of finite sequences over M. Given
a set of names I and a mapping D assigning to each name ¢ € I a type D;, we denote

by ITierD; the set of named tuples {f : I — J,_, Di|f.i € Di}



neE— p((Sx Acth, = B) x (S x Acth, x ActS x S — B)) is the edges label-
ing of D. It marks each edge e € E with a set of precondition/postcondition
pairs (pre, post). The precondition acts as a guard on the transition’s source
state and input. The transition is taken only if the guard is true. In that case
the postcondition defines the next state and the output, possibly by referring
to the current state and the input.

Although state predicates v,, were not used in our telephone protocol, they are
convenient to impose for example an upper bound timing constraint for a given
control node n. If all transitions leaving node n have only lower bounds, then
the upper bound constraint for n enforces that one of the transitions is taken
before the upper bound is reached.

From a methodological point of view, it might be appropriate to require cer-
tain well-formedness conditions for the predicates involved. For example, the
enabledness of a transition should depend only on the precondition, i.e., the
postcondition should not constrain the current state and the input. Formally, for
all data states s€S, inputs iEActIE, edges e€ E and precondition/postcondition
pairs (pre, post)€ne:

pre(s,i) = 3s',0. post(s,i,o,s")

A state transition diagram satisfying this property is called precondition con-
trolled. Similarily, the destination data state s’ should be a valid state of the
destination control node. We call such a node postcondition complete. Formally,
for all states s,s'€S, inputs i€Actk, outputs ocActs, edges (n,n')eE and
precondition/postcondition pairs (pre, post)En(mnr):

pre(s,i) A post(s,i,0,s") = vp(s')

However, we do not enforce these conditions in the semantics. They should be
treated on the methodological level, either by restricting the language or by
automatically generating proof obligations.

4 The Semantics of TSTDs

The semantics of a timed state transition diagram is given as a relation between
the communication histories along its input and its output ports. For simplicity,
the communication histories are defined over a discrete time domain which is
taken to be the set of natural numbers N. However, this semantics could easily
be extended to a dense time domain [MS96].

As usual in weakly monotonic discrete time semantics [AH92], each complete
communication history is an infinite sequence of finite sequences of messages.
Each finite sequence contains the messages occuring within the same time unit.
Given a set of messages D, the set (D*)* is the set of partial communication
histories over D and the set (D*)*° is the set of complete communication histories
over D. In the following we abbreviate (D*)> by DX.



The ports of a component in our semantic model are named and typed. As a
consequence the communication histories over its input and respectively out-
put ports are named products of communication histories. We call them named
communication histories. Formally, if the port signature of the timed state tran-
sition diagram is XY = (I,0,D), then the set of complete named communi-
cation histories over the input and the output ports are given by [[,.; Df and
[I.co DY respectively. The set of partial named communication histories is given
by [Lic (D;)* and [],co(D})*. The named communication sequences within a
time unit are denoted by [[,c; Di and [[,co Dj. In the following we also refer to
named communication histories as communication histories when no confusion
arises.

Given a € D® and i € N, then al; € (D*)* denotes the partial communication
history consisting of the first i finite sequences in the complete communication
history «. This operation is overloaded to named communication histories and
to sets of named communication histories in a point-wise and an element-wise
style, respectively.

The input/output relation corresponding to a TSTD is a set valued function

F: HieIsz - @(Hoengj)

mapping complete input histories to sets of complete output histories. However,
not every relation with this functionality is adequate to give the semantics of a
TSTD: In reality, TSTDs can not predict the future. The output produced by a
TSTD until some point in time must not depend on input the TSTD will receive
in the future. This condition is formally captured by the following definition:

Definition 3. (Timed relations) We call an input/output relation F' € []

DY = o([1,co DY) weakly time guarded, if for all o, 8 : [],c; DY and i € N

ali =Bl = Flali=F@)

We call an input/output relation strongly time guarded, if the following stronger
condition holds

ali =0l =  Fla)it = F(B)lin

Before we give the formal definition of the input output relation generated by
a TSTD, let us introduce some operators on sequences which are used in this
definition.

iel
icl

For any finite sequences s, si,ss and element a, a::s is the sequence s with
a appended in front of s, s;7ss is the concatenation of s; and sy and #s
is the length of s. [] is the empty sequence and [ay,...,a,] is the sequence
ar::(az ... (ap 2 []). If ar=a2=...=a, we also write [a"]. The operations :
and 7 are overloaded for the case in which the second argument is an infinite
sequence.

~

On sequences of sequences, an operation related to is the paste operation
~.:(D*)* x DY — DX. It only differs from the conventional concatenation ™



in that the last sequence of s; is pasted with the first sequence of s-.
Va,b € D*,s; € (D*)*,s5 € DX, (517 [a]) " ([b] " s2) = 51" [a"b] " s2

This operation allows us to take a prefix of a communication history, by cutting
the history in the middle of a sequence of messages occurring in the same time
unit. Formally, we say that ¢ is a prefix of «, written as ¢ C « if the following
holds:

pCa & 3B ¢ B=a

Given a partial communication history ¢ € (D*)* and a time value ¢t € N,
we denote by @t € (D x N)* the time-stamped communication history, i.e.,
the communication history with time information made explicit and adjusted to
the time point ¢. Formally, for every a € D,u € D* and ¢ € (D*)* the time-
stamped sequence ((a::u) @)@t is defined as below. Remember that a and all
the messages in u occurr in the same time unit.

((a::u) @)@t ={(a,t):: ((u::p)Qt)
=9)at =0t +1)
Jat =[(e,1)]

If no confusion can arise, a tuple (a,t) from a time stamped sequence is also
written as a@t. In this definition and in the following, we tacitly assume that
the symbol © is also an element of D. The last element (S, t) of a time stamped
sequence is needed to distinguish between timed sequences ending with a differ-
ent number of trailing empty sequences. As we shall see in Section 5, this allows
us to give a different semantics to empty- and to negative patterns, respectively.
Empty patterns like i7[] are satisfied when no message in the input port is
consumed, whereas negative patterns like 176 are satisfied only if no message
has arrived on the input port until now.

All operators introduced in this section are overloaded to named communication
histories and to sets of communication histories in a point-wise and an element-
wise style, respectively®. If v, 5 € [[;c;Nand k € N then we write y+4¢ and y+k
for the named product which is obtained by summing v and § componentwise
and by adding k to each component of v respectively. Moreover, for a state s of
the TSTD we write s + k for the state in which now is incremented by k.

The operational intuition is as follows: The state space of the component consists
of a control part (node), a data part (attributes), a time part (now variable), and
a tuple f € II;cyN. The value f.i indicates the arrival time of the first message
in the input port ¢ which has not yet been processed by the component. The
component starts in an initial data state so satisfying the predicate vy, of the
start node, and f.i = (so).now for all 7 € I. In each state, the component can
wait for some amount of time until a transition is taken. However, waiting is

* Note that [, , D} =~ ([[;e; D)™ Forp € [[,, Di and a € [ [, D} we therefore
consider ¢ :: « to be also an element of HiEI D}.



only allowed either if no transition was already enabled or if waiting does not
lead to a chaotic behavior. The transition consumes part of the input, updates f
accordingly, and sends some output in the current time interval. If the component
performs a transition, then the transition is instantaneous, i.e., the value of the
timer now is the same in the next state. In the definition below, we will assume
that now cannot be modified, i.e., it does not occur primed in the postcondition
of the TSTD.

Definition 4. (History Semantics of TSTDs) Given a state transition diagram
D = (X,S,G,v,n). Then the semantics of D is the input/output relation F
which is defined as follows:

F €Ilies DF = 9(I1oe0 D5)
F(@) = Usev(ng) F'(5,n0, Ai € I.(s.now))(a)

F is the greatest weakly time guarded input/output relation parametric with
respect to the current data state, current control state and arrival time of the first
messages in the named input communication history that satisfies the following
equation:

FeSxNxILieN=TILe DY = p(Il,c0 DY)

F(Sanaf)(a):{ﬂenonDs |

VkE e N —— the delay measured in ticks
Vm € N. —— the next control node
Vo € [ (D7)". —— the timed input of the TSTD
Vi) € [[,co Ds- —— the output of the TSTD
Vs' € S. —— the next state of the TSTD
Vpre € S x ActIE — B. —— the transition’s precondition
Vpost € S x Acth, x ActS x S — B. —— the transitions’s postcondition
(pCaA —— is a prefix of

(pre, post) € Npm) A —— (pre,post) is in the TSTD
Un(8) Avp(s') A —— src/dest predicates are satisfied
pre(s+k, oQf) A post(s+k, pQf, 1, s'") —— pre/post predicates are satisfied
= —— chaos completion

da’ € [T;e; DY, B € I1,co D5- ——  the suffixes of @ and 3

a=¢p a A —— ' is indeed a suffix of a
B=[0"1v]=8 A —— (' is indeed a suffix of 3

B € F(s',m, f+#¢)(a) —— (' is in the continuation of F’

)

A —— 1o chaos for time:



(VE' < k. —— an enabled transition

Un(8) Avpg(s') A —— has to be taken
pre(s+k', pQf) A post(s+k',pQf 1, s") —— before

= —— it becomes disabled
Un(8) Avpg(s') A —— because of
pre(s+k, 9@ f) A post(s+k,p@f, 1, s')  —— time progression

)
}

As usual we define that Fy C F holds if Va.F(«) C Fo(a). Since the F' occurs
only positively on the right-hand side of the equation, the corresponding func-
tional is monotone w.r.t. this ordering, which implies the existence of a greatest
solution. By the greatest weakly time guarded input-/output relation we mean
the relation which is obtained by removing all behaviors which are not weakly
time guarded in this solution.

5 Pattern Syntax of Transitions

The concrete syntax for state transition diagrams, and for the underlying predi-
cate logic may depend on the concrete objectives for which timed state transition
diagrams are used, and on the available tool support. One possible syntax has
been given in the telephone protocol example.

However, we found it convenient to use transition rules of the following form:

{ Pre} ip [ op {Post}

where Pre and Post are predicate expressions and ip and op are input and output
patterns (see the next two sections). The precondition Pre may contain as free
variable the current state s € Il,c 4D, and the variables occuring free in the
input pattern. The postcondition Post may contain as free variables s and the
next state s, as well as the variables occuring free in the input and output
patterns. Since attributes not mentioned explicitly primed in the postcondition
Post are assumed to remain unchanged, we denote by Post the conjunction of
Post with equations s'.a = s.a for all these attributes.

Suppose that p and n are environments for the free variables contained in the
input and respectively the output patterns, that ¢ denote the current input
action, and that ¢ denotes the current output action. Then the predicates pre
and post with respect to Pre, Post, ip and op are defined as follows:

pre(s,go) = Elp : [[Pre]]s,p A [[ip]]s,p,(p
pOSt(S7SO71/}7 S,) = Elp?" : IIip]]&p,Lp A IIPOSt]]s7s’7p777 A [[Op]]s7s’7p77771[1

Here, [PredExp],,, denotes the interpretation (i.e. a truth value) of the predi-
cate expression PredFExp with respect to some environment env. We assume the




interpretation function to be given as usual for predicate expressions. The defi-
nition of the input and the output patterns together with their interpretations
is the subject of the next two sections.

5.1 The Input Patterns

The input patterns are used to simplify the definition of the precondition/post-
condition. An input pattern has the following form:

P a=i1TP1, .y in TP
p = [m[Qt],...,mi[Qt]] | ©

where the port names i are all distinct. It associates each input port name iy,
1<k<n, with an input port pattern pj. The port pattern [mq[@ty],...,mg[@t]]
tests for the presence of the message sequence [mq,...,my] on the associated
port. Each message mj may be optionally time stamped with the time of the
message arrival. The empty pattern [] indicates that input is ignored on the asso-
ciated port. To simplify the diagrams, input port patterns with empty patterns
are not explicitly written, and one-element patterns like i?[m] are written as
1?7m. The port pattern © tests for the absence of any message on the associated
port. It allows us to specify priorities and to model timeouts and interrupts.
Note again the subtle difference between the empty pattern [| and the negative
pattern ©. [] expresses that input is not required for the transition, while &
expresses that there is no input.

Given the current state s, an environment p for the free variables in ¢p and an
input sequence ¢ we define the interpretation of an input pattern

171, -y im Dm

as below. Without loss of generality, we assume that I = {i1,...,im,...}.
[i1?p1s -y im Pl , def Vie<m t [i6Pk]s 5 o A Vism t 167015 .0
[i2fmaf@t], ..., mi[@t ][], ., & [Imi@t], ..., [me@t], ,, [0t ] = ¢.
[i7el; .0 o [©@s.now] = ¢.i

For messages not explicitly time stamped in the input patterns as well as for the
negative pattern ©, we assume the existence of fresh, anonymous time variables
in the environment p.

For simplicity, all patterns in the example in Section 2 have used only one-
element lists. However, it is often convenient to use the more general form of
patterns introduced in this section. For instance, the requirement that the time
between the dialing of two consecutive digits is limited to 20s can be expressed
as follows:

{Vi.1§i§3.ti+1—ti<205 } i?[d(a;)@t;, d(as)@ts, d(a3)@ts, d(ay)0ty]

.



5.2 The Output Patterns

The output patterns are used to simplify the definition of the postcondition. An
output pattern has the following form:

op::=o1'pr,...,0,!pn
p == [mla"'amk]

where the port names oy are all distinct. It associates each output port name oy,
1<k<n, with an output port pattern pj. The port pattern [mq,..., my] defines
the message sequence on the associated output port.

Given two states s and s’, environments p, ) for the free variables, and an output
sequence v, we define the interpretation of an output pattern

o1!pt, ..., om'pm
as below. Without loss of generality, we assume that O = {o01,...,0p,...}.
def
[oilpr,- - om!pmls o pnw = Ve<m lok!pils s pnw N Vism 9.0, =]
def
[o![m1 .. ’mk]]]&swmﬂ/z = [[[ml]]s,S’mm’ T [[mk]]s,S’mm] = 1.0

6 Composition

Given two timed state transition diagrams tstd; and tstd, with port signatures
X1 = (I1,01,D1) and Xy = (I, 02, D3), respectively. If O; N Oz = @) and for all
i € (I1 N02) U (I N Oy) it holds that (Dy); = (D2);, then we call the two port
signatures compatible. For compatible signatures X; and X5, the composition
X ® X5 is defined as follows: each output port of X is connected with an input
port of the same name of Y5, and similarily, each output port of X5 is connected
to an input port of X;. The feedback channels introduced this way are hidden in
X1 ® Xo. Formally, ¥y ® Xy = (1,0, D), where*

I:(Il\OQ)U(IQ\Ol) O:(OI\I‘Z)U(OQ\II) D =D+ D,

The resulting network is graphically depicted in Figure 5.

* Given two type mappings (D;)ics and (Dj});ey, their sum is defined such that (D +
D"Yi =Diifi €I, and (D+ D')i = D'.iif i € J. Given two named tuples
p € IlicrD; and ¢ € H]—EJD;, and K C I, their sum ¢ + 9 is defined such that
(p+v)i=giifiel, and (p+1).i =.iif i € J. The projection p|x is defined
such that (p|x).i = ¢.i for all i € K.



I\ O, 0 1,\0,

Fig. 5. Composition

Let the semantics of tstd; and tstd> with compatible port signatures be given by

[tstd] : TLics, (D1); = 9(Iico, (D1)});
IItStd2]] : HiEIz (1)2):t - p(HiEO2 (D2):t)

The semantics [tstd; ® tstds] of their composition is equal to the parallel com-
position with feedback [tstd] ® [tstdz] of their input-/output-relations. The op-
erator ® is defined for relations as follows:

[tstdi] ® [tstda] : [T;e; DF — 9(Tlico DY)
([tstdr] @ [tstda]) () =
{Blo € [Lico Dl Blo, € [tstdil(els, + Bl1) A Blo, € [tstde](alr, + Bl1,)}

For the above equation a unique solution exists if both input-/output relations
are time guarded on the feedback channels [GKR96, BS97].

7 Conclusion

We have presented timed state transition diagrams, a new formalism for the spec-
ification of real-time aspects of reactive systems. The formalism is based on a
semantic model where components communicate asynchronously via unbounded
FIFO-channels. We have shown that existing approaches using this communica-
tion paradigm, like SDL and ROOM, fail to model real-time aspects accurately.
The basic idea of our formalism is to time-stamp messages with their arrival
time and to allow the specifier to label transitions with timing constraints. By
using negative patterns, we can also easily deal with priorities. Therefore, timed



state diagrams can be seen as a powerful extension of SDL and ROOM. In par-
ticular, it allows for a stepwise development process, where timing constraints
are omitted in the first step and introduced gradually in the next steps. Our
approach is fully modular, since it is based on FOcCUs, a formal approach for the
specification and refinement of reactive systems [BDD93, BS97, GS96].

Among other formalisms for real time systems, timed input/output automata
[LV96, LSVW95] seem to be closest to our approach. However, whereas the
main goal of timed input/output automata is to provide a semantical model for
real time systems, our main concern was to provide a pragmatic and tractable
specification formalism for real time systems.

Timed state transition diagrams can be extended in several ways. A first exten-
sion would be to use a dense time model. We believe that such an extension can
easily be accomplished along the lines of [MS96]. Dense time models are gaining
more and more attention in theory and practice for the modeling of real-time
systems. Of great importance is also the development of a tractable refinement
calculus, as it has been presented for a similar, time-independent notation in
[RK96]. Future extensions will also include an extension to hierarchical state
transition diagrams & la statecharts [Har87]. The semantic foundations needed
for hierarchical AND-states have already been presented in this paper. In con-
strast to the various approaches under way to define a semantics for statecharts
[Von94], we start from a semantic model and define an appropriate notation for
specifying components.
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