
Reconciling Real�Time

with Asynchronous Message Passing

M� Broy� R� Grosu� C� Klein�

Institut f�ur Informatik� TU M�unchen� D������ M�unchen
email� fbroy�grosu�kleing�informatik	tu�muenchen	de

Abstract� At
rst sight� real�time and asynchronous message passing
like in SDL and ROOM seem to be incompatible	 Indeed these languages
fail to model real�time constraints accurately	 In this paper� we show how
to reconcile real�time with asynchronous message passing� by using an
assumption which is supported by every mailing system throughout the
world� namely that messages are time�stamped with their sending and
arrival time	 This assumption allows us to develop a formalism which is
adequate to model and to specify real�time constraints	 The proposed
formalism is shown at work on a small real�time example	

� Introduction

Asynchronous message passing has gained a lot of popularity in the industrial
community� Two of the most prominent speci�cation and description languages
for real�time systems use it as their basic communication and synchronization
scheme between processes� the ITU�T speci�cation and description language SDL
�OFMP���� IT��	 and the ObjecTime speci�cation and description language
ROOM �SGW��	�

Basically� the behavior of a system in SDL or ROOM is given as a set of asyn�
chronously communicating extended �nite state machines
EFSM�� A signal in�
stance� i�e�� a message� is created when an EFSM executes an output and ceases
to exist when the receiving EFSM consumes the signal in an input� Commu�
nication channels convey the signal instance from the sender to the receiver�
When the signal arrives� it is kept in the input port of the receiver� which is
an unbounded FIFO queue� until the receiver consumes it� The virtue of this
communication scheme is the loose coupling between system parts� a sender is
never blocked because a receiver is not ready to communicate�

In order to express real�time constraints� both SDL and ROOM allow to access
the global� actual time and to set and reset timers� A timer is a stopwatch which
is set with an expiration time� The expiration of the timer is then signaled to

� This work is partly sponsored by the Deutsche Forschungs Gemeinschaft �DFG�
project Syslab

the process as an ordinary input signal� When a timer is no longer needed� it
can be reset before its expiration� to avoid spurious expirations�

Unfortunately� these timing facilities are not precisely de�ned in the SDL and
ROOM semantics �Hin��� Leu�
� BB��� SGW��	 and therefore implementation
dependent� Practical experience has shown that the SDL timing facilities behave
well only if the tolerance intervals are at least ��� times the average instruction
time of the CPU used for the implementation �OFMP���	� Moreover� these
timing facilities are not always expressive enough� In order to understand why
this is the case� let us examine a small fragment of a telephone protocol�

� After the caller has lifted the phone receiver� he must receive a dial
tone within ���s��

Assuming that no delay occurs on the communication lines� this protocol can be
expressed very intuitively by using a timed variant of message sequence charts�
as shown in Figure �� left� where offH is the abbreviation for o��hook� dtB is
the abbreviation for dial�tone�begin and a�b are points in time
see �IT��	 for
the MSC standard��

idle

offH

dtB

waitF

offHa

dtBb

Caller TelHandler

b - a < 0.1s

Fig� �� MSC and EFSM for the protocol fragment

This requirement is neither expressible in SDL nor in ROOM� The best one can
do is to write the EFSM given in SDL�notation in Figure �� right� It consists
of a start symbol� the control states idle and waitF� and a transition labeled
by the input offH and the output dtB� This EFSM neither guarantees that the
transition is taken synchronously with the generation of the offH message nor
that the transition takes less than ���s� The transition can be delayed� even if the
dtB message was already queued in the input port� Moreover� it is unknown how
long does it take to produce the output dtB� Note that timers are not helpful in
this case� since they can only be used to enforce a reaction if a signal does not
arrive within a given time interval�

One of the most successful formal models for specifying and verifying real�time
systems are timed automata �AD��� HNSY��	� The formalism of timed automata

generalizes �nite state machines over in�nite strings to generate
or accept� in�
�nite sequences of states which are additionally constrained by timing require�
ments�

A timed automaton operates with �nite control � a �nite set of locations� a �nite
set of propositions and a �nite set of real�valued clocks� All clocks proceed at
the same rate and measure the amount of time that has elapsed since they were
reset� Each edge of the automaton may reset some of the clocks and assign new
values to a set of propositional variables� Each edge and each location may put
certain constraints on the values of the clocks and propositions corresponding to
that location�

Using a syntax similar to the one given in �HNSY��	� the caller and the telephone
handler automata can be expressed as shown in Figure �� Suppose the channels
i and o and the timer x are modeled with shared variables� and that composition
is done by interleaving� If initially i �� offH� then only the caller automaton can
proceed by �sending� offH along i simultaneously with reseting the timer x� The
telephone handler is then able to make its �rst transition� The second transition
of the telephone handler can than be taken at any moment such that x � ���s
with the e�ect of �sending� dtB�

s3s1 s2
i = offH

i := offH, reset(x)

TelHandler

Caller

c1 c2

x < 0.1s o := dtB→

Fig� �� The timed automata solution

The above timed�automata solution uses shared variables both for communica�
tion and for time synchronization� Although shared variables are appropriate
for single�processor systems� they are unnatural in the context of distributed
systems� Moreover� the timed automata approach is not modular� since timed
automata may constrain their environment� as we will show in the next section�

Note that the sharing of the timer variable x between the caller and the telephone
handler implies that the receiver knows when the offH message has been sent�
In the following� we use essentially the same idea� but in a modular way� and
within a message�passing communication paradigm� In the solution we propose�
each message is time�stamped both with the sending and the arrival time� as
this is a common practice of any mailing system� To simplify the semantics
but
without loss of generality because the communication medium can be modeled
again as a component� we assume instantaneous delivery� i�e�� the sending and

the arrival time are considered to be the same�

As in SDL and ROOM� we describe the behavior of processes with extended
�nite�state machines which we call timed state transition diagrams
TSTDs�� We
also assume asynchronous communication and the presence of a timer variable
now containing at each moment the actual time� However� in contrast to SDL
and ROOM we allow to access the arrival time of a message by using time�
stamped input patterns� For example� the pattern i�offH�t matches the �rst
offH message in the input port i� and updates the variable t with the arrival
time of this message� This variable can be used in conjunction with now to guard
a transition� as in now � t � ���s� When the transition is taken� it takes place
instantaneously�

Using our approach� the timing requirement of the telephone protocol fragment
can be expressed with only one TSTD � the telephone handler � as shown in
Figure ��

s2s1
{now - t < 0.1s} i?offH@t / o!dtB

Fig� �� Our solution

The input and the output patterns are separated by a slash� and written in a
syntax inspired by CSP �Hoa�
	� The guard
or precondition� is written within
curly brackets before the input�output patterns� Assignments to the state vari�
ables can be written between curly brackets after the input�output patterns
the
postcondition��

Intuitively� a component speci�ed by this TSTD behaves as follows� If the com�
ponent is in the control state s�� the �rst message on the port i is offH� and
the arrival time t of this message is such that now�t����s� then the component
has the choices either to perform the transition immediately� or to perform it at
any later moment now� which also satis�es the condition now��t����s�

To express timeouts and priorities between transitions� we also allow to test
for the absence of any message in a given port� For example� the input pattern
i�� is satis�ed if no message is in the input port i at time moment now� The
input pattern i�a� j�� is satis�ed if at time point now the �prioritized� port
j is empty whereas the �rst message in the port i is a� Hence� if a transition is
labeled with i�a� j�� and another with j�b� and both have the same source
control node� then the second transition has a higher priority�

If a transition has no pattern for an input port� then no message is discarded
from that port in this transition� Similarly� if a transition has no pattern for an
output port� then no message is sent on this output port�

If no transition can be taken in a given state� then the behavior of the compo�
nent is completely unspeci�ed
�chaotic��� This implies that we have to handle
undesired input explicitly� This is in contrast to SDL� where input messages
without a matching transition are implicitly ignored� Although at �rst sight the
SDL approach might seem more convenient� this implicit assumption often leads
to subtle errors in SDL speci�cations�

Note that time stamping the input can be avoided� if the input transition of the
receiver is synchronous with the output transition of the sender� This assumption
however� would change the communication paradigm� In contrast� our time�
stamped model is fully asynchronous and contains the SDL and the ROOM
models as a particular case� in which all timing constraints equal true� This
allows for a modular speci�cation formalism along the lines of �BDD���� BS���
GS��	� and for a stepwise development process� where timing constraints are
omitted in the �rst step �GKRB��	 and introduced gradually in the next steps�
The above would not hold� however� if we would change our model such that
transitions are taken as soon as they become enabled� Moreover� in this case one
would also have to introduce prophecies in order to express an arbitrary delay
within a given interval�

Our paper is organized as follows� In Section �� we intuitively introduce timed
state transition diagrams by specifying a simpli�ed telephone handler� In Section
� we introduce the abstract syntax of timed state transition diagrams� Section
� de�nes the semantics of TSTDs in terms of timed input��output relations�
Section
 is concerned with the syntax and the semantics of input� and output
patterns� In section � we discuss the composition of TSTDs� Finally� in section
� we draw some conclusions�

� Dialing a Telephone Number

In order to get more intuition about our model and to show how we deal with
timeouts� let us formalize the behavior of a telephone handler� which controls the
dialing of a four�digit telephone number� The telephone handler has to satisfy
the following requirements�

�� After the caller has lifted the phone receiver� he must receive a dial tone
within ���s

�� If the caller does not respect the following timing requirements� then the
telephone handler should return a timeout tone and disconnect the line�

�a	 After receiving the dial tone� the caller must dial the
rst digit within
��s�

�b	 After a digit has been dialed� the next digit must be dialed within ��s�

�c	 After the caller has lifted the phone receiver� he must dial a complete
number within ��s

The speci�cation of the telephone handler is given in Figure ��

tstd TelHandler � f

input i � TelI

output o � TelO

attributes n� c� dt� nt � Nat

transitions

idle waitF waitN connecting

onH1 onH2

disconnect

onH3

offH first done

next

toutF toutN

transition precondition input output postcondition

o
H now � t � �	�s i�o
H� t o�dtB dt� � nt� � now

rst t � dt � ��s i�d�a�� t o�dtE
n� � a �
c� � � �
dt� � now

next
t � dt � ��s �
t � nt � ��s �
c � �

i�d�a�� t
n� � n � �� � a �
c� � c � � �
dt� � now

done
t � dt � ��s �
t � nt � ��s �
c � �

i�d�a�� t n� � n � �� � a

onH� now � t � �	�s i�onH� t o�dtE

onH�
t � dt � ��s �
t � nt � ��s

i�onH� t

onH� i�onH o�dcE

toutF now � dt � ��s i�� o�dcB

toutN
now � dt � ��s �
now � nt � ��s

i�� o�dcB

g

Fig� �� The telephone handler

The speci�cation consists of an interface declaration part� an attribute decla�
ration part and a state transition diagram� The interface declaration lists the
names of the input and the output ports together with their types� The at�
tributes are de�ned by their name� type� and
optionally� an initial value� The
telephone handler has an input port i 	 TelI and an output port o 	 TelO� where
the message sets TelI and TelO are de�ned as follows�

data TelI
 offH � onH � d�Digit

data TelO
 dtB � dtE � dcB � dcE

The above types de�ne the set of messages allowed to �ow between the caller and
the telephone handler� Each message consists of a message name and optional
data� For example� offH contains no data while d��
 contains both the message
name d
igit� and the data value � � Digit� where Digit is assumed to range
between � to �� The bar notation is used to separate alternatives� It is similar
to data�type declarations as they are used in functional languages like ML
see
�Pau��	��

The abbreviations onH� dtE� dcB and dcE are used for on�hook� dial�tone�end�
disconnect�begin and disconnect�end respectively�

The attribute n is used to store the telephone number� the attribute c is used
to count the number of digits already received� the attribute nt is used to save
the arrival time of the �rst digit and the attribute dt is used to save the arrival
time of the previous digit�

To enhance the readability of the state transition diagrams we allow to de�ne the
transitions separately in tabular form and to refer them by their name� A good
practice is to use for the transition�s name the name
or a common attribute�
of the transition�s input message
s�� For example� the transition offH is de�ned
as follows� if the component is in the control state idle and the �rst message
in its input port i is offH� then it sends the message dtB along its output
port o provided that offH was received at a time t such that now � t� ���s�
Additionally� the current time is saved in dt and nt� This is needed to raise a
timeout if the �rst digit is not dialed within ��s or if the number is not dialed
within ��s� The other transitions are de�ned analogously�

Note that if no message has arrived on the port i� then a timeout transition takes
place exactly at the moment when the time limit has expired� Contrast this with
SDL and ROOM� where a timeout message is queued as an ordinary message
after the timeout has expired� As a consequence� it can be only guaranteed that
timeout processing does not happen before the time limit has expired� Contrast
this also with timed automata� where the input is not inspected in the timeout
transitions� This is not necessary in that approach� because the correct traces of
the environment and the automaton are generated together�

Since we use transition diagrams primarily for speci�cation purpose� the precon�
ditions and the postconditions are allowed to be arbitrary predicates� However�
often one might be interested in a speci�cation technique which can be used for

validation purposes or for direct code generation� In such cases� one is free to use
some restricted form of predicates� such as equations or executable statements of
some programming language� Let us now give the formal de�nition of the state
transition diagrams introduced so far�

� Timed State Transition Diagrams

A real�time component described by a timed state transition diagram commu�
nicates with its environment along typed input and output ports� They de�ne
the interface of the component and are given formally by a port signature�

De�nition ��
Port signature� Let I and O be disjoint sets of input and respec�
tively output port names � Let D be a mapping assigning to each port c � I �O
a type Dc� A port signature is a tuple � �
I� O�D��

Let � denote the time�stamped sequence of message which is expected to arrive
along the input interface before a transition is taken� Since the input ports
are named and typed� � is a record
or named tuple�� and for each i � I � ��i
represents the sequence of messages which is expected to arrive along the port
i� Formally�� � is an element of the named product �i�I
Di � N�� � where N

denotes the domain of time stamps� In the following� we denote this set of input
actions by ActI� � Similary� let � denote the sequence of messages which are sent
along the output interface when a transition is taken� Since the output ports are
named and typed and the output sequences are sent on all ports in the same
time unit� � is an element of the set of output actions ActO� � �o�OD

�
o � This

powerful concept of input and output actions often allows us� in contrast to SDL�
to eliminate trivial intermediate states and transitions�

De�nition ��
State Transition Diagram� A state transition diagram is a tuple
D �
��S�G� �� �� where�

� �
I� O�D� is a port signature�

S � �a�ADa de�nes the data state space of D� Each a � A is an attribute a

with associated type Da� One special� read only attribute now � N contains
at each moment the current time�

G �
N�E � N �N�n�� is the control graph of D� Each node n � N de�nes a
control state and each edge
n�� n�� � E de�nes a control transition� n� � N

is the initial control node�

� � N �
S � B � is the node labeling of D� It marks each control state n � N

with a predicate �n giving the associated data states�

� Given an arbitrary setM � we denote byM� the set of
nite sequences overM 	 Given
a set of names I and a mapping D assigning to each name i � I a type Di� we denote
by �i�IDi the set of named tuples ff � I �

S
i�I

Dijf�i � Dig

� � E � 	

S �ActI� � B � �
S �ActI� �ActO� � S � B �� is the edges label

ing of D� It marks each edge e � E with a set of precondition�postcondition
pairs
pre� post�� The precondition acts as a guard on the transition�s source
state and input� The transition is taken only if the guard is true� In that case
the postcondition de�nes the next state and the output� possibly by referring
to the current state and the input�

Although state predicates �n were not used in our telephone protocol� they are
convenient to impose for example an upper bound timing constraint for a given
control node n� If all transitions leaving node n have only lower bounds� then
the upper bound constraint for n enforces that one of the transitions is taken
before the upper bound is reached�

From a methodological point of view� it might be appropriate to require cer�
tain well�formedness conditions for the predicates involved� For example� the
enabledness of a transition should depend only on the precondition� i�e�� the
postcondition should not constrain the current state and the input� Formally� for
all data states s�S� inputs i�ActI� � edges e�E and precondition�postcondition
pairs
pre� post���e�

pre
s� i� � �s�� o� post
s� i� o� s��

A state transition diagram satisfying this property is called precondition con

trolled � Similarily� the destination data state s� should be a valid state of the
destination control node� We call such a node postcondition complete� Formally�
for all states s� s��S� inputs i�ActI� � outputs o�ActO� � edges
n� n���E and
precondition�postcondition pairs
pre� post����n�n���

pre
s� i� 	 post
s� i� o� s�� � �n�
s��

However� we do not enforce these conditions in the semantics� They should be
treated on the methodological level� either by restricting the language or by
automatically generating proof obligations�

� The Semantics of TSTDs

The semantics of a timed state transition diagram is given as a relation between
the communication histories along its input and its output ports� For simplicity�
the communication histories are de�ned over a discrete time domain which is
taken to be the set of natural numbers N� However� this semantics could easily
be extended to a dense time domain �MS��	�

As usual in weakly monotonic discrete time semantics �AH��	� each complete
communication history is an in�nite sequence of �nite sequences of messages�
Each �nite sequence contains the messages occuring within the same time unit�
Given a set of messages D� the set
D��� is the set of partial communication
histories overD and the set
D��� is the set of complete communication histories
over D� In the following we abbreviate
D��� by D��

The ports of a component in our semantic model are named and typed� As a
consequence the communication histories over its input and respectively out�
put ports are named products of communication histories� We call them named
communication histories� Formally� if the port signature of the timed state tran�
sition diagram is � �
I� O�D�� then the set of complete named communi�
cation histories over the input and the output ports are given by

Q
i�I D

�
i and

Q
o�OD�

o � respectively� The set of partial named communication histories is given
by
Q
i�I
D

�
i �� and

Q
o�O
D�

o��� The named communication sequences within a
time unit are denoted by

Q
i�I D

�
i and

Q
o�OD�

o � In the following we also refer to
named communication histories as communication histories when no confusion
arises�

Given
 � D� and i � N� then

i �
D��� denotes the partial communication
history consisting of the �rst i �nite sequences in the complete communication
history
� This operation is overloaded to named communication histories and
to sets of named communication histories in a point�wise and an element�wise
style� respectively�

The input�output relation corresponding to a TSTD is a set valued function

F �
Q
i�I D

�
i � 	

Q
o�OD�

o �

mapping complete input histories to sets of complete output histories� However�
not every relation with this functionality is adequate to give the semantics of a
TSTD� In reality� TSTDs can not predict the future� The output produced by a
TSTD until some point in time must not depend on input the TSTD will receive
in the future� This condition is formally captured by the following de�nition�

De�nition ��
Timed relations� We call an input�output relation F �
Q
i�I

D�
i � 	

Q
o�OD�

o � weakly time guarded� if for all
� � �
Q
i�I D

�
i and i � N

i � �
i � F

�
i � F
��
i

We call an input�output relation strongly time guarded � if the following stronger
condition holds

i � �
i � F

�
i�� � F
��
i��

Before we give the formal de�nition of the input output relation generated by
a TSTD� let us introduce some operators on sequences which are used in this
de�nition�

For any �nite sequences s� s�� s� and element a� a �� s is the sequence s with
a appended in front of s� s�

�s� is the concatenation of s� and s� and �s

is the length of s� �	 is the empty sequence and �a�� � � � � an	 is the sequence
a� ��
a� �� � � �
an �� �	��� If a��a�� � � ��an we also write �an	� The operations ��
and � are overloaded for the case in which the second argument is an in�nite
sequence�

On sequences of sequences� an operation related to � is the paste operation
��� �
D��� �D� � D�� It only di�ers from the conventional concatenation �

in that the last sequence of s� is pasted with the �rst sequence of s��

�a� b � D�� s� �
D���� s� � D��
s�
��a	��
�b	�s�� � s�

��a�b	�s�

This operation allows us to take a pre�x of a communication history� by cutting
the history in the middle of a sequence of messages occurring in the same time
unit� Formally� we say that � is a pre�x of
� written as � v
 if the following
holds�

� v
 � ��� ��� �

Given a partial communication history � �
D��� and a time value t � N�
we denote by ��t �
D � N�� the time�stamped communication history� i�e��
the communication history with time information made explicit and adjusted to
the time point t� Formally� for every a � D�u � D� and � �
D��� the time�
stamped sequence

a ��u� �����t is de�ned as below� Remember that a and all
the messages in u occurr in the same time unit�

a ��u� �����t� ha� ti ��

u �����t�

�	 �����t ���
t � ��

�	�t � �h�� ti	

If no confusion can arise� a tuple ha� ti from a time stamped sequence is also
written as a�t� In this de�nition and in the following� we tacitly assume that
the symbol � is also an element of D� The last element h�� ti of a time stamped
sequence is needed to distinguish between timed sequences ending with a di�er�
ent number of trailing empty sequences� As we shall see in Section
� this allows
us to give a di�erent semantics to empty� and to negative patterns� respectively�
Empty patterns like i��� are satis�ed when no message in the input port is
consumed� whereas negative patterns like i�� are satis�ed only if no message
has arrived on the input port until now�

All operators introduced in this section are overloaded to named communication
histories and to sets of communication histories in a point�wise and an element�
wise style� respectively�� If ��
 �

Q
i�I N and k � N then we write ��
 and ��k

for the named product which is obtained by summing � and
 componentwise
and by adding k to each component of � respectively� Moreover� for a state s of
the TSTD we write s � k for the state in which now is incremented by k�

The operational intuition is as follows� The state space of the component consists
of a control part
node�� a data part
attributes�� a time part
now variable�� and
a tuple f � �i�IN� The value f�i indicates the arrival time of the �rst message
in the input port i which has not yet been processed by the component� The
component starts in an initial data state s� satisfying the predicate �n� of the
start node� and f�i �
s���now for all i � I � In each state� the component can
wait for some amount of time until a transition is taken� However� waiting is

� Note that
Q

i�I
D�
i
�� �
Q

i�I
D�
i �
�	 For � �

Q
i�I

D�
i and � �

Q
i�I

D�
i we therefore

consider � ��� to be also an element of
Q

i�I
D�
i 	

only allowed either if no transition was already enabled or if waiting does not
lead to a chaotic behavior� The transition consumes part of the input� updates f
accordingly� and sends some output in the current time interval� If the component
performs a transition� then the transition is instantaneous� i�e�� the value of the
timer now is the same in the next state� In the de�nition below� we will assume
that now cannot be modi�ed� i�e�� it does not occur primed in the postcondition
of the TSTD�

De�nition ��
History Semantics of TSTDs� Given a state transition diagram
D �
��S�G� �� ��� Then the semantics of D is the input�output relation F
which is de�ned as follows�

F �
Q
i�I D

�
i � 	

Q
o�OD

�
o �

F

� �
S
s���n��

F
s� n�� �i � I�
s�now��

�

F is the greatest weakly time guarded input�output relation parametric with
respect to the current data state� current control state and arrival time of the �rst
messages in the named input communication history that satis�es the following
equation�

F � S �N �
Q
i�I N �

Q
i�I D

�
i � 	

Q
o�OD

�
o �

F
s� n� f�

� � f � �
Q
o�OD

�
o j

�k � N�

 the delay measured in ticks
�m � N�

 the next control node
�� �

Q
i�I
D�

i ���

 the timed input of the TSTD
�� �

Q
o�OD�

o �

 the output of the TSTD
�s� � S�

 the next state of the TSTD

�pre � S �ActI� � B �

 the transition�s precondition

�post � S �ActI� �ActO� � S � B �

 the transitions�s postcondition

� v
 	

 � is a pre�x of

pre� post� � ��n�m� 	

pre�post� is in the TSTD
�n
s� 	 �m
s�� 	

 src�dest predicates are satis�ed
pre
s�k� ��f� 	 post
s�k� ��f� �� s��

 pre�post predicates are satis�ed

�

 chaos completion

�
� �
Q
i�I D

�
i � �

� �
Q
o�OD�

o �

 the su�xes of
 and �

 � ��
� 	

� is indeed a su�x of

� � ��	k��� �	��� 	

 �� is indeed a su�x of �
�� � F
s��m� f����

��

 �� is in the continuation of F

�
	

 no chaos for time�

�k� � k�

 an enabled transition
�n
s� 	 �m
s�� 	

 has to be taken
pre
s�k�� ��f� 	 post
s�k�� ��f� �� s��

 before

�

 it becomes disabled

�n
s� 	 �m
s�� 	

 because of
pre
s�k� ��f� 	 post
s�k� ��f� �� s��

 time progression

�
g

As usual we de�ne that F� � F� holds if �
�F�

� � F�

�� Since the F occurs
only positively on the right�hand side of the equation� the corresponding func�
tional is monotone w�r�t� this ordering� which implies the existence of a greatest
solution� By the greatest weakly time guarded input��output relation we mean
the relation which is obtained by removing all behaviors which are not weakly
time guarded in this solution�

� Pattern Syntax of Transitions

The concrete syntax for state transition diagrams� and for the underlying predi�
cate logic may depend on the concrete objectives for which timed state transition
diagrams are used� and on the available tool support� One possible syntax has
been given in the telephone protocol example�

However� we found it convenient to use transition rules of the following form�

fPreg ip �� op fPostg

where Pre and Post are predicate expressions and ip and op are input and output
patterns
see the next two sections�� The precondition Pre may contain as free
variable the current state s � �a�ADa and the variables occuring free in the
input pattern� The postcondition Post may contain as free variables s and the
next state s�� as well as the variables occuring free in the input and output
patterns� Since attributes not mentioned explicitly primed in the postcondition
Post are assumed to remain unchanged� we denote by Post the conjunction of
Post with equations s��a � s�a for all these attributes�

Suppose that � and � are environments for the free variables contained in the
input and respectively the output patterns� that � denote the current input
action� and that � denotes the current output action� Then the predicates pre
and post with respect to Pre� Post� ip and op are de�ned as follows�

pre
s� �� � �� � ��Pre		s�� 	 ��ip		s����
post
s� �� �� s�� � ��� � � ��ip		s���� 	 ��Post		s�s����� 	 ��op		s�s������	

Here� ��PredExp		env denotes the interpretation
i�e� a truth value� of the predi�
cate expression PredExp with respect to some environment env� We assume the

interpretation function to be given as usual for predicate expressions� The de��
nition of the input and the output patterns together with their interpretations
is the subject of the next two sections�

��� The Input Patterns

The input patterns are used to simplify the de�nition of the precondition�post�
condition� An input pattern has the following form�

ip ��� i��p�� � � � � in�pn
p ��� ���m���t�	� � � � �mk��tk				 j �

where the port names ik are all distinct� It associates each input port name ik�
��k�n� with an input port pattern pk� The port pattern ���m���t�	� � � � �mk��tk				
tests for the presence of the message sequence ���m�� � � � �mk			 on the associated
port� Each message mk may be optionally time stamped with the time of the
message arrival� The empty pattern ���			 indicates that input is ignored on the asso�
ciated port� To simplify the diagrams� input port patterns with empty patterns
are not explicitly written� and one�element patterns like i��m	 are written as
i�m� The port pattern � tests for the absence of any message on the associated
port� It allows us to specify priorities and to model timeouts and interrupts�
Note again the subtle di�erence between the empty pattern �	 and the negative
pattern �� �	 expresses that input is not required for the transition� while �
expresses that there is no input�

Given the current state s� an environment � for the free variables in ip and an
input sequence � we de�ne the interpretation of an input pattern

i��p�� � � � � im�pm

as below� Without loss of generality� we assume that I � fi�� � � � � im� � � �g�

��i��p�� � � � � im�pm		s����
def
� �k�m � ��ik�pk		s���� 	 �k
m � ��ik����					s����

��i����m���t�	� � � � �mk��tk						s����
def
� �����m��t�		s��� � � � � ��mk�tk		s��� ����t		s��			 � ��i

��i��		s����
def
� �����s�now			 � ��i

For messages not explicitly time stamped in the input patterns as well as for the
negative pattern �� we assume the existence of fresh� anonymous time variables
in the environment ��

For simplicity� all patterns in the example in Section � have used only one�
element lists� However� it is often convenient to use the more general form of
patterns introduced in this section� For instance� the requirement that the time
between the dialing of two consecutive digits is limited to ��s can be expressed
as follows�

f�i���i���ti���ti���s g i��d�a�
�t�� d�a�
�t�� d�a�
�t�� d�a�
�t��

��� The Output Patterns

The output patterns are used to simplify the de�nition of the postcondition� An
output pattern has the following form�

op ��� o� p�� � � � � on pn
p ��� ���m�� � � � �mk			

where the port names ok are all distinct� It associates each output port name ok�
��k�n� with an output port pattern pk� The port pattern ���m�� � � � �mk			 de�nes
the message sequence on the associated output port�

Given two states s and s�� environments �� � for the free variables� and an output
sequence �� we de�ne the interpretation of an output pattern

o� p�� � � � � om pm

as below� Without loss of generality� we assume that O � fo�� � � � � om� � � �g�

��o� p�� � � � � om pm		s�s������	
def
� �k�m � ��ok pk		s�s������	 	 �k
m � ��ok � �	

��o ���m�� � � � �mk					s�s������	
def
� �����m�		s�s����� � � � � � ��mk		s�s�����			 � ��o

� Composition

Given two timed state transition diagrams tstd� and tstd� with port signatures
�� �
I�� O�� D�� and �� �
I�� O�� D��� respectively� If O� �O� � � and for all
i �
I� � O�� �
I� � O�� it holds that
D��i �
D��i� then we call the two port
signatures compatible� For compatible signatures �� and ��� the composition
����� is de�ned as follows� each output port of �� is connected with an input
port of the same name of ��� and similarily� each output port of �� is connected
to an input port of ��� The feedback channels introduced this way are hidden in
�� ���� Formally� �� ��� �
I� O�D�� where�

I �
I� nO�� �
I� nO�� O �
O� n I�� �
O� n I�� D � D� � D�

The resulting network is graphically depicted in Figure
�

� Given two type mappings �Di�i�I and �D
�
j�j�J � their sum is de
ned such that �D�

D���i � D�i if i � I� and �D � D���i � D��i if i � J 	 Given two named tuples
� � �i�IDi and � � �j�JD

�
j � and K � I� their sum � � � is de
ned such that

��� ���i � ��i if i � I� and ��� ���i � ��i if i � J 	 The projection �jK is de
ned
such that ��jK��i � ��i for all i � K	

I O θ

1 2

I O1 2

O I

ϕ ψ

∩ O I ∩

2 1

O1221

1 2 O2

 \

 \ I1

I

 \

 \

F F

Fig� �� Composition

Let the semantics of tstd� and tstd� with compatible port signatures be given by

��tstd�		 �
Q
i�I�

D��
�

i � 	

Q
i�O�

D��
�

i ��

��tstd�		 �
Q
i�I�

D��
�

i � 	

Q
i�O�

D��
�

i ��

The semantics ��tstd� � tstd�		 of their composition is equal to the parallel com

position with feedback ��tstd�		� ��tstd�		 of their input��output�relations� The op�
erator � is de�ned for relations as follows�

��tstd�		� ��tstd�		 �
Q
i�I D

�
i � 	

Q
i�OD�

i �

��tstd�		� ��tstd�		�

� �

f�jO �
Q
i�OD�

i j �jO�
� ��tstd�		

jI� � �jI�� 	 �jO�

� ��tstd�		

jI� � �jI� �g

For the above equation a unique solution exists if both input��output relations
are time guarded on the feedback channels �GKR��� BS��	�

� Conclusion

We have presented timed state transition diagrams� a new formalism for the spec�
i�cation of real�time aspects of reactive systems� The formalism is based on a
semantic model where components communicate asynchronously via unbounded
FIFO�channels� We have shown that existing approaches using this communica�
tion paradigm� like SDL and ROOM� fail to model real�time aspects accurately�
The basic idea of our formalism is to time�stamp messages with their arrival
time and to allow the speci�er to label transitions with timing constraints� By
using negative patterns� we can also easily deal with priorities� Therefore� timed

state diagrams can be seen as a powerful extension of SDL and ROOM� In par�
ticular� it allows for a stepwise development process� where timing constraints
are omitted in the �rst step and introduced gradually in the next steps� Our
approach is fully modular� since it is based on Focus� a formal approach for the
speci�cation and re�nement of reactive systems �BDD���� BS��� GS��	�

Among other formalisms for real time systems� timed input�output automata
�LV��� LSVW�
	 seem to be closest to our approach� However� whereas the
main goal of timed input�output automata is to provide a semantical model for
real time systems� our main concern was to provide a pragmatic and tractable
speci�cation formalism for real time systems�

Timed state transition diagrams can be extended in several ways� A �rst exten�
sion would be to use a dense time model� We believe that such an extension can
easily be accomplished along the lines of �MS��	� Dense time models are gaining
more and more attention in theory and practice for the modeling of real�time
systems� Of great importance is also the development of a tractable re�nement
calculus� as it has been presented for a similar� time�independent notation in
�RK��	� Future extensions will also include an extension to hierarchical state
transition diagrams !a la statecharts �Har��	� The semantic foundations needed
for hierarchical AND�states have already been presented in this paper� In con�
strast to the various approaches under way to de�ne a semantics for statecharts
�Von��	� we start from a semantic model and de�ne an appropriate notation for
specifying components�

Acknowledgments

We thank Jan Philipps� Ursula Hinkel and Christian Prehofer for reading a draft
version of the paper�

References

�AD��� Rajeev Alur and David L	 Dill	 A theory of timed automata	 Theoretical
Computer Science� ��������������� April ����	

�AH��� R	 Alur and T	A	 Henzinger	 Logics and models of real time� a survey	 In
J	W	 de Bakker� K	 Huizing� W	�P	 de Roever� and G	 Rozenberg� editors�
Real Time� Theory in Practice� Lecture Notes in Computer Science ����
pages ������	 Springer�Verlag� ����	

�BB��� F	 Bause and P	 Buchholz	 Protocol analysis using a timed version of SDL	
In J	 Quemada� J	 Ma�nas� and E	 Vazquez� editors� Formal Description
Techniques	 North Holland� ����	

�BDD���� M	 Broy� F	 Dederichs� C	 Dendorfer� M	 Fuchs� T	F	 Gritzner� and
R	 Weber	 The Design of Distributed Systems � An Introduction to

FOCUS	 Technical Report SFB �������� A� Technische Universit�at
M�unchen� Institut f�ur Informatik� ����	

�BS��� M	 Broy and K	 St�len	 Interactive System Design	 To appear� ����	

�GKR��� Radu Grosu� Cornel Klein� and Bernhard Rumpe	 Enhancing the syslab
system model with state	 TUM�I ����� Technische Universit�at M�unchen�
����	

�GKRB��� Radu Grosu� Cornel Klein� Bernhard Rumpe� and Manfred Broy	 State
transition diagrams	 TUM�I ����� Technische Universit�at M�unchen� ����	

�GS��� Radu Grosu and Ketil Stoelen	 A Model for Mobile Point�to�Point Data�
�ow Networks without Channel Sharing 	 In Martin Wirsing and Maurice
Nivat� editors� Proceedings of the �th International Conference on Alge�
braic Methodology and Software Technology� AMAST���� Munich� Ger�
many� pages �������	 Lecture Notes in Computer Science ����� ����	

�Har��� D	 Harel	 Statecharts� A visual formalism for complex systems	 Science
of Computer Programming� �� ����	

�Hin��� Ursula Hinkel	 SDL and Time � A Mysterious Relationship	 ����	 sub�
mitted to SDL Forum ��	

�HNSY��� T	A	 Henzinger� X	 Nicollin� J	 Sifakis� and S	 Yovine	 Symbolic model
checking for real�time systems	 In Proceedings of the Seventh Annual Sym�
posium on Logic in Computer Science� pages �������	 IEEE Computer
Society Press� ����	

�Hoa��� C	A	R	 Hoare	 Communicating sequential processes	 Prentice�Hall Inter�
national series in computer science	 Prentice Hall� Inc	� Englewood Cli
s�
New Jersey� ����	

�IT��� ITU�T	 Recommendation Z��		� Speci
cation and Description Language
�SDL�	 ITU�T� Geneva� ����	

�IT��� ITU�T	 Z��
	 � Message Sequence Chart �MSC�	 ITU�T� Geneva� ����	

�Leu��� S	 Leue	 Specifying Real�Time Requirements for SDL Speci
cations � A
Temporal Logic�Based Approach	 In Proceedings of the Fifteenth Inter�
national Symposium on Protocol Speci
cation� Testing� and Veri
cation
PSTV���	 Chapmann Hall� ����	

�LSVW��� N	 Lynch� R	 Segala� F	 Vaandrager� and H	B	 Weinberg	 Hybrid
I�O automata	 Technical Report CS�R����� CWI� Computer Sci�
ence Department� Amsterdam� ����	 Also appeared in� Hybrid
Systems III� Lecture Notes in Computer Science	 Available under
http���www�cs�kun�nl��fvaan�	

�LV��� N	A	 Lynch and F	 Vaandrager	 Forward and backward simulations � part
II� Timed systems	 Information and Computation� ������������ ����	

�MS��� Olaf M�uller and Peter Scholz	 Speci
cation of real�time and hybrid sys�
tems in focus	 TUM�I ����� Technische Universit�at M�unchen� ����	

�OFMP���� A	 Olsen� O	 F!rgemand� B	 M�ller�Pedersen� R	 Reed� and J	 R	 W	
Smith	 Systems Engineering Using SDL��
	 Elsevier Science� North�
Holland� ����	

�Pau��� L	C	 Paulson	 ML for the Working Programmer	 Cambridge University
Press� ����	

�RK��� B	 Rumpe and C	 Klein	 Automata describing object behavior	 In
H	 Kilov and W	 Harvey� editors� Speci
cation of Behavioral Semantics
in Object�Oriented Information Modeling� pages �������� Norwell� Mas�
sachusetts� ����	 Kluwer Academic Publishers	

�SGW��� B	 Selic� G	 Gullekson� and P	 T	 Ward	 Real�Time Object�Oriented Mod�
eling	 John Wiley and Sons� Inc	� ����	

�Von��� M	 Von der Beeck	 A Comparison of Statecharts Variants	 Lecture Notes
in Computer Science� ������������ September ����	

This article was processed using the LATEX macro package with LLNCS style

