
Stepwise Re�nement of Data Flow

Architectures �

Jan Philipps Bernhard Rumpe

Institut f�ur Informatik

Technische Universit�at M�unchen

D������ M�unchen

fphilipps�rumpeg�informatik�tu�muenchen�de

Abstract

Software and hardware architectures are prone to modi�cations� We demon�

strate how a mathematically founded re�nement calculus for a class of ar�

chitectures� namely data �ow networks� can be used to modify a system in

a provably correct way� The calculus consists of basic rules to add and to

remove components and channels to a system�

� Introduction

The architecture of a software or hardware system in	uences its e
ciency� its adaptility�
and the reusability of components� Especially the adaption to new requirements causes
frequent changes in the architecture while the system is developed� or when it is later
extended� However� the de�nition of architecture is still rather informal in the software
engineering community� and the question of how to properly modify an architecture has
not been adequately addressed so far�

In this paper� we examine how a certain class of system architectures� namely data 	ow
networks� can be modi�ed� so that the new system is a provably correct re�nement of
the original system� Our work is based on a precise mathematical model ���
� �� for such
data 	ow networks� This model gives a compositional semantics to data 	ow networks�
and hence components can be structurally composed to build hierarchical models of a
system�

The semantic model is simple� yet powerful� when specifying component behavior� cer�
tain aspects can be left open� We refer to this style as underspeci�cation� The reduction

�This paper partly originates from the SysLab project� which is supported by the DFG under the

Leibniz program� by Siemens�Nixdorf and Siemens Corporate Research�

of this underspeci�cation immediately gives a re�nement relation for black box behav�
iors�

In addition to black�box or behavioral re�nement� two other classes of re�nement relation
can be established�

� structural re�nement �glass box re�nement�

� signature re�nement

While black box re�nement only relates black box behaviors of not further detailed com�
ponents� structural re�nement allows us to re�ne a black box behavior by a subsystem
architecture� Signature re�nement deals with the manipulation of the system or com�
ponent interfaces� As shown in ���� both structural and signature re�nement can be
reduced to behavioral re�nement� In Section � we will see that behavioral re�nement is
a simple subset relation�

Neither of these three re�nement classes� however� allows architectural re�nement in
the sense that two glassbox architectures are related� In ����� we introduced a concept
for glass�box re�nement� again� it can be de�ned in terms of behavioral re�nement�
For the practical application of architectural re�nement� we de�ned a rule system to
incrementally change an architecture� e�g� by adding new components or channels�

In this paper� we demonstrate in detail how the rule system can be applied to a concrete
example� It is structured as follows� In Sections � and
 we present the mathematical
foundations and de�ne the concepts of component and system� In Section � we summa�
rize the rules introduced in ����� Section � describes the re�nement of the re�nement of
a simple data acquisition system� Section � concludes�

� Semantic Model

In this section we introduce the basic mathematical concepts for the description of sys�
tems� We concentrate on interactive systems that communicate asynchronously through
channels� A component is modeled as a relation over input and output communication
histories that obeys certain causality constraints�

We assume that there is a given set of channel identi�ers� C � and a given set of messages�
M �

Streams� We use streams to describe communication histories on channels� A stream
over the set M is a �nite or in�nite sequence of elements from M � By M � we denote the
�nite sequences over the set M � The set M � includes the empty sequence that we write
as h i� The set of in�nite sequences over M is denoted by M��

Communication histories are represented by timed streams�

M � �def �M
���

The intuition is that the time axis is divided into an in�nite stream of time intervals�
where in each interval a �nite number of messages may be transmitted�

These intervals are often of a �xed duration� such as months or days for reports in
business information systems� or milliseconds in more technical applications� Their
duration need not be �xed� however� the intervals could also span the time between
certain events that are of interest to the system� such as the pressing of a button� In
each interval� the order of the messages is �xed� but the exact arrival time of a message
is unknown�

For i � N and x � M � we denote by x � i the sequence of the �rst i sequences in the
stream x � When writing speci�cations� we sometimes ignore the interval boundaries�
and regard a stream as the �nite or in�nite sequence of messages that results from the
concatenation of all the intervals� We then use the syntax a � r to split a stream into
its �rst element a� and the remaining sequence r �

A named stream tuple is a function C � M � that assigns histories to channel names�
For C � C we write

��
C for the set of named stream tuples with domain C �

For x �
��
C and C � � C � the named stream tuple x jC ��

��
C � denotes the restriction of x

to the channels in C ��

� c � C � � x jC � �c� � x �c�

Behaviors� We model the interface behavior of a component with the set of input
channels I � C and the set of output channels O � C by a function

� �
��
I � P�

��
O �

Intuitively� � maps the incoming input on I to the set of possible outputs on O � and
thus describes the visible behavior of a component with input channels I and outputs
channels O �

Equivalently� � can be seen as a relation over the named stream tuples in
��
I and the

named stream tuples in
��
O � � is called a behavior� Since for every input history multiple

output histories can be allowed by a behavior� it is possible to model nondeterminism� or
equivalently� to regard relations with multiple outputs for one input as underspeci�ed�

A function f �
��
I �

��
O can be seen as a special case of a deterministic relation� We

say the f is time guarded� i� for all input histories x and y � and for all i � N

x � i � y � i � �f x � � �i � �� � �f y� � �i � ��

A time guarded function f is called a strategy for a behavior � if for all x we have
f �x � � ��x �� If � has at least one strategy� we say that � is realizable�

Time guardedness re	ects the notion of time and causality� The output at a certain time
interval may only depend on the input received so far� and not on future input�

Interface adaption� Given a behavior � �
��
I � P�

��
O �� we can de�ne a behavior with

a di�erent interface by extending the set of input channels� and restricting the set of
output channels� If I � I � and O � � O � then � � � �lI

�

O � is again a behavior with
� ��i� � ���i jI �� jO �

This corresponds to the change of the component interface by adding input channels
that are ignored by the component� and by removing output channels that are ignored
by the environment�

Composition� Behaviors can be composed by a variety of operators� Sequential and
parallel composition� as well as a feedback construction is introduced in ���� For our
work� we use a generalized operator � that composes a �nite set of behaviors

B � f�� �
��
I� � P�

��
O��� � � � � �n �

��
In � P�

��
On�g

in parallel with implicit feedback� We de�ne

O � 	��k�nOk

I � �	��k�nIk� nO

where O is the union of all component outputs� and I is the set of those inputs� that
are not connected to any of the components� outputs�

Then the relation �B �
��
I � P�

��
O � is characterized by�

o � ��B��i�

� l �
������
�I 	 O� �
l jO� o � l jI� i �

� k � f�� � � �ng � l jOk
� �k�l jIk �

If all behaviors in B are realizable� then so is �B � The proof follows ���� it relies on the
time guardedness of strategy functions�

It is easy to express parallel and sequential composition of behaviors with the� operator�

Re�nement� Intuitively� a behavior describes the externally observable input�output
relation that the clients of a component may rely on� Re�ning a behavior in a modular
way means that the client�s demands are still met� when the component behavior is
specialized�

Formally� the re�nement relation in our framework is de�ned as follows� Given two
behaviors ��� �� �

��
I � P�

��
O � we say that �� is re�ned by ��� i�

� i �
��
I � ���i� � ���i�

Re�nement means in our context that each possible channel history of the new compo�
nent is also a possible channel history of the original component�

� Components and Systems

In this section� we de�ne an abstract notion of system architecture� Basically� a system
consists of a set of components and their connections� We �rst de�ne components� and
then introduce the architectural or glass box view� and the black box view of a system�

Components� A component is a tuple c � �n� I �O � ��� where n is the name of the
component� I � C is the set of input channels� and O � C the set of output channels�
Moreover� � �

��
I � P�

��
O � is a behavior�

The operators name�c� in�c� out�c and behav�c yield n� I � O and �� respectively� The
name n is introduced mainly as a convenience for the system designer� The channel
identi�ers in�c and out�c de�ne the interface of the component�

Architectural view of a system� In the architectural view� a system comprises a �nite
set of components� A connection between components is established by using the same
channel name�

A system is thus a tuple S � �I �O �C �� where I � C is the input interface� and O � C

is the output interface of the system� C is a �nite set of components�

We want to be able to decompose systems hierarchically� In fact� as we will see� a
system can be regarded as an ordinary component� Therefore systems need not be
closed �having empty interfaces�� and we introduce the interface channels I and O to
distinguish external from internal channels�

We de�ne the operators in�S � out�S � arch�S to return I � O and C � respectively� In
addition� we write�

in�C �def 	c�arch�S�in�c�
out�C �def 	c�arch�S�out�c�

for the union of the input or output interfaces� respectively� of the components of S �

The following consistency conditions ensure a meaningful architectural view of a system
S � Let c� c�� c� � arch�S be components� with c�
� c��

��� name�c�
� name�c� Di�erent components have di�erent names

��� out�c� � out�c� � � Each channel is controlled by only one

component

�
� in�S � out�c � � Input channels of the system interface are

controlled by the environment� not by a

component

��� in�c � out�C 	 in�S Each input channel of a component con�

trolled by either another component or by the

environment

��� out�S � out�C Each channel of the output interface is con�

trolled by a component

Note that we allow that input channels are in more than one interface� a channel can
have multiple readers� even broadcasting is possible� Not every channel of the system
input interface has to be connected to a component� since condition � only requires the
subset relation instead of equality�

We allow a component to read and write on the same channel if desired� as a consequence
of conditions �
� and ���� however� system input and output are disjoint�

Black Box view of a system� The behavior of a component c is given in terms of its
relation behav�c between input and output streams� We de�ne the black box behavior of
a system S composed of �nitely many components arch�S using the composition operator
�� The result of this composition is then made compatible with the system interface by
restricting the output channels to those in out�S � and by extending the input channels
to those in in�S �

��S �� � ��f behav�c j c � arch�S g�lin�S
out�S

Because of the context conditions for systems the composition is well�de�ned� The hiding
of the internal output channels out�C n out�S and the extension with the unused input
channels in�S n in�C is also well�de�ned�

The black box behavior has the signature�

��S �� �
���
in�S � P�

����
out�S �

Thus� the black box behavior can now be used as a component description itself� Intro�
ducing a fresh name n� we de�ne the component cS as�

cS � �n� in�S � out�S � ��S ���

In this way� a hierachy of architectural views can be de�ned and iteratively re�ned and
detailed�

Later on we need a more detailed de�nition of this semantics� By expanding the de��
nitions of the � and l operators� we obtain the following equivalent characterisation of
���I �O �C ����

o � ���I �O �C ����i�

� l �
��������
�I 	 out�C � �
l jO� o � l jI� i �

� c � C � l jout�c� �behav�c��l jin�c�

This expanded characterisation says� that o is an output of the system for input i �line
��� i� there is a mapping l of all channels to streams �line ��� such that l coincides with
the given input i and output o on the system interface channels �line
� and feeding the
proper submapping of l into a component results also in a submapping of l �

� Re�nement of system architectures

When a system is re�ned� it must not break the interaction with its environment� The
observable behavior of a re�ned system must be a re�nement of the behavior of the
original system�

In this paper� we leave the interface of the system unchanged� Interface re�nements that
a�ect the signature of a system S are described in ��� for black box behaviors� they can
be adapted to our architectural framework� We also ignore aspects of realizability� The
techniques used to prove that a component speci�cation is realizable are orthogonal to
the rules presented here� and will not be considered in this paper�

We therefore de�ne the re�nement relation on systems as a behavioral re�nement on the
given interface�

S�S �
def � i �
���
in�S � ��S ����i� � ��S ���i�

As explained above� we tacitly assume that in�S � in�S � and out�S � out�S �� Stepwise
re�nement is possible� since the re�nement relation is transitive�

S�S � � S ��S �� � S�S ��

In ����� we de�ned and justi�ed a set of constructive re�nement rules that allows re�
�nements of system architectures� The rules allow us to add and remove components�
to add and remove channels� to re�ne the behavior of components� and to re�ne single
components to subsystems and vice versa�

In the sequel� we summarize these rules� in Section � we will apply them to a simple
example� Each rule re�nes a system S � �I �O �C � into another system S � � �I �O �C ���
We use the syntax

S with C �� C �

to denote the system �I �O �C ��� In addition� we write

S with c �� c �

to denote the system �I �O � �C n fcg� 	 fc �g��

To create a component with the same name and interface as c � �n� I �O � ��� but with
a di�erent behavior � �� we use the syntax

c with behav�c �� � �

to denote the component �n� I �O � � ��� Similarly� we can change the name or interface of
a component�

The re�nement rules are presented in the syntax

�Premises�

�Re�nement�

where the premises are conditions to be ful�lled for the re�nement relation to hold�

Behavioral re�nement� Systems can be re�ned by re�ning the behavior of their com�
ponents� Let c � C be a component� If we re�ne the behavior of c to �� we get a
re�nement of the externally visible� global system behavior�

c � C

� i �
��
in�c � ��i� � behav�c

S�S with behav�c �� �

In some cases� to prove the behavioral re�nement of c some assumptions on the contents
of c�s input channels are necessary� Then this simple rule cannot be used�

To overcome this problem� we introduce the notion of behavioral re�nement in the
context of an invariant� An invariant is a predicate � over the possible message 	ows
within a system S � �I �O �C ��

� �
��������
�I 	 out�C �� B

An invariant is valid within a system� if it holds for all named stream tuples l de�ning
the system�s streams� This can be formally expressed similar to the expanded de�nition
of the system semantics ��S �� presented in Section
�

� l �
��������
�I 	 out�C � �
�� c � C � l jout�c� �behav�c��l jin�c��� ��l�

Note that invariants are not allowed to restrict the possible inputs on channels from I �
but only characterize the internal message 	ow�

Let us now assume that we want to replace the behavior of component c by a new
behavior �� The latter is a re�nement of behav�c under the invariant �� when�

� l �
��������
�I 	 out�C � �
��l�� ��l jin�c� � �behav�c��l jin�c�

Thus� the complete re�nement rule is as follows� The two premises express that � is a
valid invariant� and that � re�nes behav�c under this invariant�

� l �
��������
�I 	 out�C � �
�� c � C � l jout�c� �behav�c��l jin�c��� ��l�

� l �
��������
�I 	 out�C � �
��l�� ��l jin�c� � �behav�c��l jin�c�

S�S with behav�c �� �

This rule is the only one that requires global properties of a system as a premise� The
other rules only deal locally with one a�ected component� However� since � is used
only for a single application of this rule� it is often su
cient to prove its invariance with
respect to a relevant subset of all the system components�

Behavioral re�nement of a component usually leads to true behavioral re�nement of the
system� This is in general not the case for the following architectural re�nements� which
leave the global system behavior unchanged�

Adding and removing output channels� If a channel is neither connected to a system
component� nor part of the system interface� it may be added as a new output channel
to a component c � arch�S �

p � C n �I 	 out�C �

� �
��
in�c � P�

��������
out�c 	 fpg�

� i � o � o � ��i�
 o jout�c� behav�c�i�

S�S with

out�c �� out�c 	 fpg
behav�c �� �

The new behavior � does not restrict the possible output on channel p� Hence� the
introduction of new output channels increases the nondeterminism of the component� It
does not� however� a�ect the behavior of the composed system� since p is neither part
of the system interface nor connected to any other component� The contents of the new
channel can be restricted with the behavioral re�nement rule�

Similarly� an output channel p � out�c can be removed from the component c� provided
that it is not used elsewhere in the system�

p
� O 	 in�C

� � behav�clin�c
out�cnfpg

S�S with

out�c �� out�c n fpg
behav�c �� �

The new behavior � is the restriction of the component behavior behav�c to the remaining
channels�

Adding and removing output channels are complementary transformations� Conse�
quently� both rules are behavior preserving� This is not surprising� since the channel in
question so far is not used by any other component�

Adding and removing input channels� An input channel p � C may be added to a
component c � C � if it is already connected to the output of some other component or
to the input from the environment�

p � I 	 out�C

� � behav�clin�c�fpg
out�c

S�S with

in�c �� in�c 	 fpg
behav�c �� �

The new behavior � now receives input from the new input channel p� but is still
independent of the data in p�

If the behavior of a component c does not depend on the input from a channel p� the
channel may be removed�

� i � i � �
��
in�c � i jin�cnfpg� i � jin�cnfpg

� behav�c�i� � behav�c�i ��

� i �
��
in�c � ��i jin�cnfpg� � behav�c�i�

S�S with

in�c �� in�c n fpg
behav�c �� �

Because the component does not depend on the input from p ��rst premise�� there is a
behavior � satisfying the second premise�

The rule for removing input channels might seem useless � why should a component
have an input it does not rely on� However� note that it is possible to �rst add new
input channels that provide basically the same information as an existing channel� then
to change the component�s behavior so that it relies on the new channels instead� Finally�
the old channel can safely be reduced�

As with output channels� adding and removing input channels are complementary trans�
formations and thus behavior preserving� This is because the input channels do not in	u�
ence the component�s behavior� and therefore the global system behavior is unchanged�
too�

Adding and removing components� A component can be added without without
changing the global system behavior if we ensure that it is not connected to the other
components� or to the system environment� Later� we may successively add input or
output channels� and re�ne the new component�s behavior with the previously given
rules�

� c � C � name�c
� n

S�S with C �� C 	 f�n����� ��g

The premise simply ensures that the name n is fresh� the new behavior � is somewhat
subtle� it is the unique behavior of a component with no input and no output channels�
f��g � ������

Similarly� components may be removed if they have no output ports that might in	uence
the functionality of the system�

out�c � �

S�S with C �� C n fcg

Expanding and Folding� As we have seen� components can be de�ned with the black
box view of systems� In this way system architectures can be decomposed hierarchically�
a single component of a system is replaced by another system� We therefore need a rule
for expansion of components� Assume a given system architecture S � �IS �OS �CS �
contains a component c � CS � This component c is itself described by an architecture
T � �IT �OT �CT �� The names of the components in T are assumed to be disjoint from
those in S � through renaming this can always be ensured� The expansion of T in S

takes the components and channels of T and incorporates them within S �

c � �n� IT �OT � ��T ���
out�CT � out�CS � out�c

out�CT � IS � �

S�S with CS �� CS n fcg 	 CT

The �rst premise means that the architecture T describes the component c� The other
two premises require that the internal channels of T � which are given by out�CT n OT �
are not used in S � In general� this can be accomplished through a renaming rule� which
it would be straightforward to de�ne�

The complementary operation to the expansion of a component is the folding of a sub�
architecture T � �IT �OT �CT � of a given system S � �I �O �C ��

T is a subarchitecture of S � if

� the components CT are a subset of the components C of S �

� the inputs IT of T at least include the inputs of the components in CT that are not
connected to some output of a component in CT � they may include other inputs
as well� except those input channels that are either in the global system input I
or controlled by a component in the complete system C �

� similarly� the outputs OT are a subset of the component outputs out�CT � and
include at least those outputs from out�CT that are connected to either the envi�
ronment or to other components in C �

The folding rule is de�ned as follows�

In
Key

Data
I

PRE RDB

Figure �� Database example

CT � C

in�CT n out�CT � IT � �I 	 out�C � nOT

out�CT � �O 	 in��C n CT �� � OT � out�CT

� c � C nCT � name�c
� n

S�S with C �� C n CT 	 f�n� IT �OT � ��T ���g

The �rst three premises are the conditions mentioned above� the fourth premise requires
that the name n of the new component is not used elsewhere in the resulting system�

� Re�nement example

In this section� we demonstrate how our re�nement rule system can be used in practice�
Our example architecture is shown in Figure �� it models a small data acquisition system�

The system reads input via an input In� the messages on In consist of pairs of a key and
some data to be stored under this key� new data values for the same key overwrite old
values� Concurrently� the system answers request for the data of a certain key that is
input via channel Key by transmitting the data stored in the database under this key
via channel Data�

Internally� the system consists of two components� a preprocessor PRE� and a database
RDB� The data from the environment �rst undergoes some transformations in PRE� and
is then forwarded via the internal channel I to the remote database�

Let Key be the set of possible keys for the database� and Data the set of possible data
values� Then� Entry � Key � Data is the set of possible entries for the database� The
database itself is modeled as a function M � Key � Data� We write M �k� for the
data item stored under key k � If there is not yet a proper item stored under k � then
M �k� should return an otherwise unused item �� By M �k �� d � we denote the updated
database M �� where M ��j � � d if j � k � and M ��j � � M �j � otherwise�

The two components PRE and RDB are speci�ed as state machines �Figures ��
�� We
assume that there is a given function f � Data � Data� that handles the preprocessing
for a single datum�

In order to reduce the transmission time for the entries� we now want to transmit for
each entry only the di�erence of the entry�s data with respect to the already stored data
for that key� the di�erences are assumed to be smaller in size than the data itself� Of

PRE

In��k � d��I��k � f d�

Figure �� Preprocessor speci�cation

RDB

M �� �

I��k � d��M �� M �k �� d �

Key�k�Data��M �k��

Figure
� Remote database speci�cation

course� the �rst entry for each key will need to be transmitted completely�

We are not intersted in the algorithmic aspects of the computation of the di�erence
between old data and new data� we just assume that the di�erence between two data
items is itself an element of Data� and that there is a function

 � Data �Data � Data

that computes the di�erence between old and new data� Another function

� � Data �Data � Delta

reconstructs the new data given old data and the di�erence� We require that

��dold � �dold � dnew�� � dnew

To simplify our speci�cations� we also assume that

 ��� d� � d � ���� �� � �

These two function can be extended to streams� where they take a database M as an
additional parameter�

 �
M �h i� � h i

 �
M ��k � d�� x � � �k � �M �k�� d��� �

M �k ��d � �x �

��M �h i� � h i

��M ��k � ��� x � � �k � ��M �k�� ���� ��M �k ����M �k����� �x �

Informally� the system modi�cation is simple� the preprocessor is extended with a lo�
cal database� for each new entry the di�erence to the old is computed and forwarded�
The remote database reads the input� computes the new value out of stored value and
received di�erence� and stores this new value in its database� One possible design for
this modi�cation is to introduce encoding and decoding components� that compute the
di�erences and reconstruct the original data� respectively�

In the sequel� we show how this re�nement can be justi�ed with our rule system� The
modi�cation consists of eight steps�

Step �� Adding components� First� we introduce two new components to the system
by two applications of the re�nement rule� The new components� ENC and DEC� are
not connected to any other component in the system�

After this re�nement step� the system looks as follows�

IIn
Key

DataPRE RDB

ENC DEC

Step �� Adding output channels� Now we add an output channel D to ENC� and
an output channel R to DEC� Since these channels are neither part of the system inter�
face� nor previously connected to any component� the premises of the re�nement rule
for the addition of channels are satis�ed� Note that the contents of the channel are so
far completely unde�ned� and the components ENC and DEC are therefore now nonde�
terministic� Nevertheless� the behavior of the system itself is unchanged� since the data
on the new channels is unused throughout the system�

The following �gure depicts the system after this re�nement step�

IIn
Key

DataPRE RDB

D
ENC DEC

R

Step �� Adding input channels� We now connect the channel I to the encoder ENC�
The encoder still ignores the additional input� however� and hence the output D of ENC
is still arbitrary� Similarly� we connect D to the decoder�

The system now looks like this�

IIn
Key

DataPRE RDB

D R
ENC DEC

Step �� Behavioral re�nement� Now we constrain the channels D and R to carry the
di�erences of the data on I and the reconstructed data� respectively� This is accomplished
by restricting the behavior of ENC and DEC� and we can use the simple behavioral
re�nement rule for this step�

The encoder component is now speci�ed as follows�

�ENC� fIg� fDg� ��

where

� l � l � � l � � ��l�
 l ��D� � �
�
�l�I�

Thus� the encoder just applies the di�erence function � to its input stream I�

Similarly� we de�ne the behavior of DEC as an application of the restoration function
�� Since until now the behavior of the components was completely unspeci�ed� this
re�nement is obviously correct�

The structure of the system remains unchanged�

Step �� Adding an input channel� We now connect the channel R to the remote
database� The behavior of RDB still ignores the additional input� however�

This step gives us the following system�

IIn
Key

DataPRE RDB

D R
ENC DEC

Step �� Behavioral re�nement with invariant� Now we want the remote database to
store the data transmitted on R instead of that on I� Conversely� the input via I should
be ignored�

The new behavior can again be speci�ed as a state transition diagram� it looks just like
the one in Figure
� except that the upper transition reads from channel R instead of
channel I�

Unfortunately� we cannot prove this re�nement step with the simple behavioral re�ne�
ment rule used in Step �� The reason is that after the re�nement the behavior of RDB
is only then still correct� if the data on R is the same as that on I� Since neither R nor I
is controlled by RDB� this cannot be proven locally�

The solution here is to use the behavioral re�nement rule with an invariant� Intuitively�
we know that encoding and then decoding the processed data from PRE yields the same
data as that on I�

We can formalize this knowledge with the following invariant�

��l� �def l�I� � ��
�
� �

�
�l�I���

To show that � is indeed an invariant we prove the following property� which implies ��

� x � �M � ��M �
�
M �x �� � x

The proof is by induction on x �

� If x � h i� we have for all M � �
M �x � � h i� and hence ��M �

�
M �h i�� � h i�

� If x � �k � d�� y � then for an arbitrary M �

��M �
�
M ��k � d�� y�� �

��M ��k � �M �k�� d���
�
M �k ��d � �y�� �

�k � ��M �k�� �M �k�� d������M �k ����M �k����M �k��d����
�
M �k ��d � �y�� �

�k � d����M �k ��d ��
�
M �k ��d � �y�� �

�k � d�� y

To prove the second premise of the behavioral re�nement rule with invariant is then
straightforward�

The structure of the system remains unchanged�

Step 	� Removing an input channel� Since the behavior of RDB now depends only
on the data on R� and not on that in I� we can disconnect I from RDB� The channel I
now only feeds the encoder�

The new system looks as follows�

In
Key

DataPRE RDB

D R
ENC DEC

Step
� Folding subsystems� In the last re�nement step� we fold the two components
PRE and ENC to a new component PRE�� and DEC together with RDB to a new
component RDB��

In
Key

DataPRE RDB

D R
ENC DEC

PRE� RDB�

Comments on the transformation� The re�nement steps described above are not fully
formal� they cannot be� since we did not use a properly formalized description of the
component behaviors� Of course� state transition diagrams can be given a mathematical
semantics ���� and in ���� a re�nement calculus for state transition diagrams is de�ned�
We hope� however� that the example shows that although each individual re�nement
rule is quite simple� they can be used together for complex system transformations�

As expected� the behavioral rule with invariant is the most complex rule to apply� In
general� it is a di
cult task for the system designer to �nd a proper invariant � that is
both easy to establish and su
ciently strong to use� The maximal invariant ��l� � True

leads to our initially given simple re�nement rule without an invariant� The minimal
possible � gives an exact description of the internal behavior of a system� but it is often
di
cult to �nd and too complex to use�

If one wants to change the behavioral descriptions of a component � in our example� to
change the remote database so that it stores the data on R instead of that on I �� one
can take advantage of his knowlege about the dependencies between internal streams�
Thus� when designing systems for adaptility� one should strive not for e
ciency� but �rst
for clarity of design� where information in all channels is as explicit as possible� Later�
re�nement steps should remove the redundancy to gain an e
cient implementation of
the system�

� Conclusion

We believe that the question of how to manipulate and adapt an architecture during
system development has not been adequately addressed so far� In particular� a basic
calculus� dealing with simple addition ond removing of channels and components in an
architectural style has�to our knowledge�not been considered before�

The most promising attempt at architecture re�nement so far has been given in ��� ���
In that work� data 	ow architectures are implemented by shared�memory architectures�
However� the semantics used is not particularly well�suited for data 	ow� and they
do not seem to support nondeterminism or underspeci�cation� Hence they only allow
!faithful implementation" which is in contrast to our approach� They do not allow
adding or removing data 	ow connections� which seems to stem from the lack of support

for underspeci�cation in their model� Underspeci�cation is the primary source that
allows us to change the information structure of an architecture� In our history�based
semantics� underspeci�cation can be easily handled�

We think that a simple re�nement calculus� especially one well�suited for the graphical
manipulation of data 	ow networks� is crucial for the applicability of a formal method�
The calculus de�ned in this paper allows to reuse given architectures or architectural
patterns and to adapt them to speci�c needs� It is therefore interesting to develop a
library of data	ow architecture designs for di�erent applications�

Our calculus currently only deals with re�nement internal to the system� As future
work� we will extend it with rules to change the interface signature in the style of ����
The new rules will allow us to change the input or output channels of a system� as well
as to split one channel into several channels carrying parts of the original information
or vice versa�

Another interesting direction is the description of component behaviors by state ma�
chines and the application of state machine re�nement rules �as de�ned e�g� in ����� for
component behavior re�nement� A concrete description technique for the component
behaviors is essential for the proof of the invariant in the behavior re�nement rule� We
have de�ned our calculus so that it can be incorporated into CASE tools� A prototypical
tool� AutoFocus �#�� is currently under development at our department� AutoFocus
already has a graphical syntax for system structures similar to the ones we use� and also
provides state�machine�based speci�cation mechanisms for component behavior�

Finally� architecture re�nement is by no means limited to business information systems�
Another promising application area is hardware design and in particular the codesign
of hardware and software components� where frequently a basic design has be changed
because of cost or performance considerations� Moreover� the simpler description tech�
niques used in hardware design and the �nite�state nature of such systems open the door
to automatic veri�cation of the re�nement rule premises�

References

��� M� Broy� Interaction re�nement the easy way� In M� Broy� editor� Program Design

Calculi� Springer NATO ASI Series� Series F� Computer and System Sciences� Vol�

���� ���
�

��� M� Broy� F� Dederichs� C� Dendorfer� M� Fuchs� T�F� Gritzner� and R� Weber� The
Design of Distributed Systems � An Introduction to FOCUS� Technical Report SFB

������� A� Technische Universit�at M�unchen� ���
� http���www��informatik�tu�
muenchen�de�reports�TUM�I�����ps�gz�

�
� M� Broy and K� St$len� Speci�cation and Re�nement of Finite Data	ow Net�
works � a Relational Approach� In Proc� FTRTFT���� LNCS ��
� pages ��#%��#�
Springer�Verlag� Berlin� �����

��� M� Broy and K� St$len� Focus on system development� Book manuscript� ���#�

��� Manfred Broy� The speci�cation of system components by state transition diagrams�
Technical Report TUM�I�#��� ���#�

��� Radu Grosu and Ketil Stoelen� A Model for Mobile Point�to�Point Data�	ow
Networks without Channel Sharing � In Martin Wirsing� editor� AMAST��	� LNCS�
�����

�#� Franz Huber� Bernhard Sch�atz� Alexander Schmidt� and Katharina Spies� AutoFo�
cus � A Tool for Distributed Systems Speci�cation � In Bengt Jonsson and Joachim
Parrow� editors� Proceedings FTRTFT��	
 Formal Techniques in Real
Time and

Fault
Tolerant Systems� pages ��#%�#�� LNCS ��
�� Springer Verlag� �����

��� M� Moriconi and Xiaolei Qian� Correctness and composition software architectures�
In Proceedings of ACM SIGSOFT ���� pages ���%�#�� �����

��� M� Moriconi� Xiaolei Qian� and R� Riemenschneider� Correct architecture re�ne�
ment� IEEE Transaction on Software Engineering� ������
��%
#�� April �����

���� J� Philipps and B� Rumpe� Re�nement of information 	ow architectures� In
M� Hinchey� editor� ICFEM���� IEEE CS Press� ���#�

���� Bernhard Rumpe� Formale Methodik des Entwurfs verteilter objektorientierter Sys

teme� PhD thesis� Technische Universit�at M�unchen� �����

